Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysatoren auf Tuchfühlung

13.09.2013
Manche medizinische Wirkstoffe, aber auch andere chemische Verbindungen könnten sich künftig deutlich einfacher herstellen lassen als bisher.

Ein internationales Team um Chemiker des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr hat auf denkbar einfache Weise diverse Katalysatoren auf Nylon fixiert und so die aktive Oberfläche der chemischen Hilfsmittel vergrößert, wodurch ihre Effizienz steigt.


Ji Wong Lee und seine Kollegen haben einen einfachen Weg gefunden, Katalysatoren an Nylonfasern zu heften. So lässt sich die aktive Oberfläche der chemischen Hilfsmittel vergrößern, sodass chemische Prozesse effizienter werden.
© Ji Wong Lee

Einer der Katalysatoren ist für die Synthese eines Arzneiwirkstoffes wichtig, lässt sich bisher aber nur in gelöster Form einsetzen – das macht den Herstellungsprozess sehr aufwendig und teuer. Die organotextile Katalyse könnte solche Synthesen deutlich vereinfachen.

Unter funktionalen Textilien versteht man in der Regel winddichte Jacken, atmungsaktives Schuhwerk oder besonders wärmende Unterwäsche. Doch der Begriff könnte bald auch für etwas anderes stehen – Textilien, die mithilfe von organischen Katalysatoren funktionalisiert werden. Forscher am Max-Planck-Institut für Kohlenforschung in Mülheim an der Ruhr haben nun in Zusammenarbeit mit Wissenschaftlern vom Deutschen Textilforschungszentrum in Krefeld und von der Sungkyunkwan Universität Suwon in Korea ein Verfahren entwickelt, um verschiedene organische Katalysatoren an Textilien zu fixieren – mit Hilfe von UV-Strahlen. Der Stoff dient somit als Träger für die Substanzen, an denen eine chemische Reaktion.

Bislang habe sich die Wissenschaft eher mit der makroskopischen Funktionalität von Textilien wie etwa von Kleidung beschäftigt, erklärt Ji Wong Lee, der am Max-Planck-Institut für Kohlenforschung vor kurzem seine Promotion bei Benjamin List, Leiter der Abteilung für Homogene Katalyse abgeschlossen hat. „Mit unserer Methode können wir hingegen einfache Textilien mit mikroskopischen Funktionalitäten ausstatten“, so der Koreaner. Gemeinsam mit seinen Kollegen rüstete er Nylon mit Katalysatoren aus und erfand so die organotextile Katalyse. Diese kann man sich als chemische Werkzeuge vorstellen, die bei Reaktionen jeweils unterschiedliche Aufgaben erledigen.

Hervorragende Ausbeute, geringer Verschleiß

Für ihre Untersuchungen verwendeten die Mülheimer Forscher drei organische Katalysatoren: einen basischen (Dimethylaminopyridin, DMAP), eine Sulfonsäure und einen Katalysator, der sowohl eine basische als auch eine Säure-Funktionalität hat. Letzterer dient in der pharmazeutischen Industrie dazu, eine Reaktion zu einem von zwei Produkten zu lenken, die chemisch völlig identisch sind. Die beiden Formen sind allerdings wie die linke und die rechte Hand spiegelbildlich gebaut, wobei nur eine Variante die gewünschte medizinisch Wirkung zeigt. Der Katalysator, der diese Variante erzeugt, ließ sich bisher nur in gelöster Form einsetzen und musste anschließend wieder abgetrennt werden. Mit einem auf Stoff fixierten Katalysator könnte die aufwendige Trennung entfallen.

Um die Hilfsmittel an die Nylonfasern zu heften, bestrahlten die Chemiker den mit einem Katalysator versetzten Stoff fünf Minuten lang mit UV-Licht. Länger nicht, weil das die Aktivität des Katalysators und auch seine Fixierung am Nylon beeinträchtigen würde. Ein vergleichbares Verfahren gab es vorher noch nicht.

Die quasi mit dem Stoff verwobenen Katalysatoren zeigten alle Eigenschaften, die Chemiker von einem solchen System erwarten: So kann sich die Ausbeute der chemischen Reaktionen, die die Wissenschaftler mit den beladenen Nylonstreifen vornahmen, sehen lassen: Alle drei Katalysatoren setzten die Ausgansstoffe zu rund 90 Prozent zu den gewünschten Produkten um. Und der in der pharmazeutischen Industrie gebräuchliche Kuppler, der nur eins von zwei Spiegelbild-Molekülen erzeugt, erreichte eine Trefferquote von mehr als 95 Prozent – ohne dabei große Anzeichen von Verschleiß zu zeigen. Mehrere hundert Versuchsdurchläufe vollzog Ji Wong Lee und stellte dabei fest, dass die Katalysatoren kaum etwas von ihrer Funktionalität einbüßten.

Eine große Oberfläche macht chemische Reaktionen effizienter

Gegenüber anderen Möglichkeiten, Katalysatoren zu fixieren, kann die „organotextile Katalyse“ mit einigen Vorteilen aufwarten: Vor allem bietet es den Reaktionspartnern eine größere Oberfläche als andere Trägermaterialien wie etwa Kunststoffkugeln oder -folien. Und je größer die Oberfläche, desto effizienter verläuft eine Reaktion. Zudem ist Nylon flexibel und sehr preiswert. Trockene, mit Katalysatoren beladene Stoffe lassen sich leicht transportieren, sodass sich die Voraussetzungen für manche chemische Prozesse leichter dort schaffen lassen, wo sich kaum anspruchsvolle chemische Anlagen errichten lassen. So könnte die organotextile Katalyse etwa helfen, Wasser dort aufzuarbeiten, wo Menschen von der Wasserversorgung abgeschnitten sind.

„Mit unserer Methode kann man günstig dauerhaft funktionalisierte Textilien herstellen, ohne dass die Umwelt belastet wird“, sagt Ji Wong Lee. Er ist fest davon überzeugt, dass sich das Verfahren in mehreren wissenschaftlichen Bereichen anwenden lässt – ebenso wie in industriellen Prozessen. „Das könnte neben der Chemie auch in der Biologie, in den Materialwissenschaften oder in der Pharmazie der Fall sein.“

Ansprechpartner
Prof. Dr. Benjamin List
Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr
Telefon: +49 208 306-2410
Fax: +49 208 306-2999
E-Mail: list@­kofo.mpg.de
Originalpublikation
Ji-Woong Lee, Thomas Mayer-Gall, Klaus Opwis, Choong Eui Song, Jochen Stefan Gutmann, Benjamin List
Organotextile Catalysis
Science, 13. September 2013; doi: 10.1126/science.1242196

Prof. Dr. Benjamin List | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/7519603/organotextile_katalyse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten