Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Katalysator hält Früchte länger frisch

13.05.2013
Auch bei niedrigen Temperaturen: trägerfixierte Platin-Nanopartikel katalysieren Ethylen-Abbau
Reifende Früchte, Gemüse und Blumen setzen Ethylen frei, das als Pflanzenhormon wirkt. Ethylen beschleunigt die Reifung, unreife Früchte beginnen ebenfalls zu reifen – und rasch sind Obst oder Gemüse verdorben, Blumen verwelkt. Japanische Wissenschaftler stellen in der Zeitschrift Angewandte Chemie jetzt ein neues Katalysatorsystem vor, das Ethylen rasch und vollständig abbaut. In Vertriebslagern könnte es die Luft ethylenfrei und so die verderblichen Produkte länger frisch halten.

Ethylen ist nicht nur ein Ausgangsprodukt der chemischen Industrie, sondern steuert als Pflanzenhormon viele physiologische Prozesse, wie die Reifung von Früchten und das Aufblühen und Verwelken von Blüten. Jeder kennt das Beispiel von Bananen in einer Plastiktüte, die rascher nachreifen als unverpackte. Eine solche Reifebeschleunigung findet sogar im Kühlschrank bei Temperaturen um 0 °C statt.

Entsprechend wichtig ist es für den Großhandel, bei der Lagerung von Obst, Gemüse und Blumen Spuren von Ethylen aus Lagern und Kühlräumen zu entfernen. Bisherige biotechnologische Methoden sind teuer, aufwendig oder wenig effektiv. Auch die Suche nach einem geeigneten Katalysator für eine katalytische Oxidation von Ethylen verlief bisher nicht besonders erfolgreich. Die besondere Schwierigkeit ist die niedrige Temperatur, bei der das Verfahren laufen soll.

Atsushi Fukuoka und seine Kollegen von der Hokkaido University haben verschiedene Edelmetalle in Kombination mit unterschiedlichen Trägermaterialien getestet, um einen wirksameren Katalysator zu entwickeln. Und sie waren erfolgreich: Platin-Nanopartikel auf einem Träger aus einem speziellen mesoporösen Siliciumdioxid (MCM-41) zeigen eine sehr hohe Aktivität für die Ethylenoxidation bei 0 bis 20 °C. Bei einer Konzentration von 50 ppm Ethylen wurde bei 0 °C ein Umsatz von mehr als 99,8 % erreicht, ein bisher unerreicht hoher Wert, der auch über längere Zeiträume oder bei mehrmaligem Einsatz stabil bleibt.

Der Katalysator wird hergestellt, indem das Trägermaterial mit einer wässrigen Lösung eines Platinsalzes 18 Stunden gerührt, getrocknet, erst unter Sauerstoff und anschließend unter Wasserstoff erhitzt wird. In den großen Poren des Siliciumdioxid-Materials entstehen dabei ca. 2,4 nm große Platin-Partikel. Diese Partikelgröße, zusammen mit dem Effekt des Siliciumdioxids, scheint für die Reaktion besonders günstig zu sein.

Vermutlich reagieren Ethylen (C2H4) und Sauerstoff an diesem Katalysator zunächst rasch zu Formaldehyd (HCHO), der am Platin adsorbiert und dort hauptsächlich zu Kohlenmonoxid (CO) und Wasserstoffspezies zersetzt wird, die wiederum mit Sauerstoffspezies zu Kohlendioxid und Wasser weiterreagieren. Als Nebenprodukt entsteht eine kleine Menge Ameisensäure. Was dem neuen Katalysatorsystem seine besonders hohe Aktivität verleiht, ist die mühelose Oxidation von CO zu CO2 an Platin auf Siliciumdioxidträgern. Die genauen Details des Reaktionsmechanismus werden derzeit untersucht.
Angewandte Chemie: Presseinfo 18/2013

Autor: Atsushi Fukuoka, Hokkaido University (Japan), http://www.cat.hokudai.ac.jp/fukuoka/english.html

Permalink to the article: http://dx.doi.org/10.1002/ange.201300496

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Dr. Renate Hoer | GDCh
Weitere Informationen:
http://presse.angewandte.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Einblick ins geschlossene Enzym
26.06.2017 | Universität Konstanz

nachricht 'Fix Me Another Marguerite!'
23.06.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Future Security Conference 2017 in Nürnberg - Call for Papers bis 31. Juli

26.06.2017 | Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Digital Mobility“– 48 Mio. Euro für die Entwicklung des digitalen Fahrzeuges

26.06.2017 | Förderungen Preise

Fahrerlose Transportfahrzeuge reagieren bald automatisch auf Störungen

26.06.2017 | Verkehr Logistik

Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit

26.06.2017 | Physik Astronomie