Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kartoffelkäfer mit RNA-Interferenz bekämpfen

27.02.2015

Mit Hilfe von RNA-Interferenz lassen sich Kartoffelpflanzen gegen ihren größten Fraßfeind wappnen.

Kartoffelkäfer sind weltweit gefürchtete Landwirtschaftsschädlinge. Da sie in den meisten Anbaugebieten keine natürlichen Feinde haben, werden sie in der Regel mit Pestiziden bekämpft. Allerdings haben die Insekten Resistenzen gegen nahezu alle Wirkstoffe entwickelt.


Fütterungsexperiment: Dargestellt sind Wildtyp-Blätter im Vergleich zu transplastomischen Blättern. Auf diesen Blättern, die täglich ersetzt wurden, fraßen Larven 3 Tage lang je 24 Stunden.

©Sher Afzal Khan, Max-Planck-Institut für chemische Ökologie


Der Kartoffelkäfer: Jede seiner Larven frisst im Durchschnitt 40 bis 50 cm2 Blattmaterial. Ein Befall kann zu Ernteverlusten von bis zu 50 % führen, wenn er nicht rechtzeitig behandelt wird.

©Sher Afzal Khan, Max-Planck-Institut für chemische Ökologie

Wissenschaftler der Max-Planck-Institute für Molekulare Pflanzenphysiologie in Potsdam-Golm und chemische Ökologie in Jena konnten nun zeigen, dass Kartoffelpflanzen durch RNA-Interferenz (RNAi) vor den Käfern geschützt werden können. Dazu veränderten sie die Pflanzen so, dass diese doppelsträngige RNA-Moleküle (dsRNAs) in ihren Chloroplasten herstellen, die gegen Gene des Kartoffelkäfers gerichtet sind. (Science, Februar 2015).

RNA-Interferenz (RNAi) ist ein natürlicher Prozess der Genregulation. Pflanzen, Pilze und Insekten schützt die RNAi aber auch vor bestimmten Viren. Bei einer Infektion schleusen die Erreger ihre Erbsubstanz in Form von doppelsträngiger RNA (dsRNA) in die Zellen ihres Wirts ein, um sich dort zu vermehren. Bei der Vervielfältigung der viralen RNA in der Zelle wird diese durch das RNAi-System erkannt und in kleinere Stücke zerlegt. Die Bruchstücke, sogenannte siRNAs (small interfering RNAs), nutzt die Zelle für die Erkennung und Zerstörung der fremden RNA.

Dieser Mechanismus lässt sich auch künstlich nutzen, indem man dsRNAs in eine Zelle einbringt, die genau zur Boten-RNA (mRNA) eines Zielgens passt. Wählt man als Ziel ein lebenswichtiges Gen eines Schädlings, so wird aus der dsRNA ein sehr präzises und wirkungsvolles Insektizid. Die dsRNAs gelangen über das Verdauungssystem in die Zellen des Insekts und können dort die Produktion des entsprechenden Proteins verringern oder sogar vollständig blockieren.

In der Vergangenheit haben Wissenschaftler bereits Pflanzen so verändert, dass sie dsRNAs gegen bestimmte Insekten produzierten. „Dies hat die Pflanzen aber nicht vollständig geschützt “, erklärt Ralph Bock vom Max-Planck-Institut für Molekulare Pflanzenphysiologie.

„Schuld daran ist das pflanzeneigene RNAi-System, das die Ansammlung größerer Mengen fremder dsRNA verhindert. Als mögliche Lösung dieses Problems erschien uns die Produktion von dsRNA in den Chloroplasten.“ Diese Zellorganellen stammen von ursprünglich frei lebenden Cyanobakterien ab, einer Gruppe von Einzellern, die kein RNAi-System besitzen.

Die Forscher um Ralph Bock entschieden sich deshalb dafür, sogenannte transplastomische Pflanzen herzustellen. Das sind Pflanzen, bei denen nicht das Kerngenom, sondern das Genom der Chloroplasten gentechnisch verändert wird.

Als Zielorganismus für die dsRNA wählten die Wissenschaftler den Kartoffelkäfer aus. Die gestreiften Käfer wurden Ende des 19. Jahrhundert von Amerika nach Europa eingeschleppt und können große Schäden in der Landwirtschaft verursachen. Heute sind sie weltweit verbreitet. Neben Kartoffelblättern fressen die Käfer und ihre Larven auch die Blätter anderer Nachtschattengewächse, wie zum Beispiel Tomate, Paprika oder Tabak. „Mit Hilfe der Chloroplastentransformation ist es uns gelungen Kartoffelpflanzen herzustellen, die große Mengen langer dsRNAs stabil in den Chloroplasten anreichern“, so Ralph Bock.

Die Wissenschaftler überprüften die Wirksamkeit von dsRNA als Insektizid am Max-Planck-Institut für chemische Ökologie in Jena. Sie ermittelten die Sterblichkeit von Larven des Kartoffelkäfers, die neun Tage mit den Blättern unterschiedlicher Kartoffelpflanzen gefüttert wurden. Getestet wurden dabei auch dsRNAs gegen zwei verschiedene Gene des Kartoffelkäfers.

„Fressen Larven transplastomische Kartoffelblätter, deren dsRNA gegen das Aktin-Gen des Käfers gerichtet ist, sterben sie innerhalb von fünf Tagen zu 100 Prozent“, erklärt Sher Afzal Khan aus Jena. Das Aktin-Gen codiert die Information für ein Strukturprotein, das für die Stabilität der Zellen unverzichtbar ist. Im Gegensatz dazu sterben die Larven nur selten, wenn sie Kartoffelpflanzen fressen, deren Zellkern gentechnisch verändert wurde. Sie wachsen dann lediglich langsamer.

Die aktuellen Ergebnisse zeigen, dass der Wechsel von der Transformation des Kerngenoms zur Transformation des Chloroplastengenoms die bisher bestehenden Hürden beim Einsatz von RNAi im Pflanzenschutz überwindet. Da Insekten zunehmend Resistenzen gegenüber chemischen Pestiziden und auch biologischen Mitteln wie Bt-Toxinen entwickeln, stellt die RNAi-Technologie eine zukunftsweisende Strategie in der Schädlingsbekämpfung dar. Die Methode ermöglicht gezielten Schutz ohne Chemikalien und ohne die Produktion fremder Proteine in der Pflanze.

KD/AO

Kontakt

Prof. Dr. Ralph Bock
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8211
RBock@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de/7889/dep_3

Dr. Kathleen Dahncke
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie
Tel. 0331/567 8275
dahncke@mpimp-golm.mpg.de
http://www.mpimp-golm.mpg.de

Angela Overmeyer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für chemische Ökologie
Tel. 03641/572 110
overmeyer@ice.mpg.de
http://www.ice.mpg.de

Originalpublikation:
Jiang Zhang, Sher Afzal Khan, Claudia Hasse, Stephanie Ruf, David G. Heckel, Ralph Bock; Full crop protection from an insect pest by expression of long double-stranded RNAs in plastids; Science, 27. 02. 2015

Weitere Informationen:

http://www.mpimp-golm.mpg.de - Max-Planck-Institut für Molekulare Pflanzenphysiologie
http://www.ice.mpg.de - Max-Planck-Institut für chemische Ökologie

Ursula Ross-Stitt | Max-Planck-Institut für Molekulare Pflanzenphysiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie

Speicherdauer von Qubits für Quantencomputer weiter verbessert

09.12.2016 | Physik Astronomie