Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Kampf gegen multiresistente Keime - Wie ein Antibiotikum gegen Krankenhauskeime wirkt

20.08.2008
Als der Wirkstoff Linezolid 2002 für den deutschen Markt zugelassen wurde, waren die Hoffnungen groß: Zum ersten Mal seit über 20 Jahren gab es mit dem Vertreter der Oxazolidinone eine wirklich neue Klasse von Antibiotika.

Und erstmals gab es eine Chance, sogenannten "Superkeimen" in Krankenhäusern und Altenheimen den Garaus zu machen, die bereits gegen herkömmliche Antibiotika Resistenzen entwickelt hatten.

Sechs Jahre später ist der Wirkstoff noch immer die letzte Rettung, wenn andere Antibiotika nicht mehr gegen Infektionen mit Gram-positiven Erregern helfen - etwa bei Lungenentzündungen, aber auch Infektionen der Haut und weicher Gewebe sowie bei Ansammlungen von Bakterien im Blut (Bakteriämien), die tödlich enden können.

Doch die Bakterien haben sich als erfinderisch erwiesen: Die ersten Resistenzen traten bereits auf. "Umso wichtiger ist das Wissen darum, wie Linezolid genau wirkt, nur so kann das Antibiotikum weiter verbessert werden", sagt Dr. Daniel Wilson vom Genzentrum der Ludwig-Maximilians-Universität (LMU) München und dem "Center for Integrated Protein Science Munich" (CIPSM). Mit Hilfe der Röntgen-Kristallographie konnte sein Team zusammen mit einer Gruppe um Professor Paola Fucini von der Universität Frankfurt zeigen, wo Linezolid im aktiven Zentrum des Ribosoms - die Proteinfabrik der Zelle - andockt und so die Proteinsynthese der Keime unterbricht. Die Ergebnisse veröffentlichten die Forscher in der Fachzeitschrift Proceedings of the National Academy of Science USA (PNAS, 18.8.2008).

Um zu überleben und sich zu vermehren besitzt jede Bakterienzelle Zehntausende von kleinen Proteinfabriken: die Ribosomen. Ständig lagern sich dort Tausende von Bauteilen zu großen Komplexen, den Proteinen, zusammen; jede Sekunde verlässt ein neues Protein diese Produktionsstätte. Das Herzstück der Proteinfabrik ist das katalytische Zentrum (Peptidyl-Transferase-Centre, PTC). Wie am Fließband wird hier die Boten-Ribonukleinsäure (mRNA) hindurch geschleust. Das fadenförmige Molekül hat die in der Erbsubstanz festgeschriebene Bauanleitung der Proteine in einer Basensequenz gespeichert und wird nun an zwei Arbeitsplätzen Stück für Stück von Transfer-Ribonukleinsäuren (tRNA) abgelesen. Dazu dockt eine tRNA zunächst am Arbeitsplatz A an der für sie passenden Stelle der mRNA an.

Der Proteinbaustein (Aminosäure), den sie transportiert, verbindet sich daraufhin mit der bereits vorhandenen Kette von Aminosäuren und verlängert diese. Die tRNA wandert anschließend gemeinsam mit der Kette zu Arbeitsplatz P, das Fließband bewegt sich eine Stelle weiter. Dieser Prozess wiederholt sich, bis das Protein fertig gestellt ist.

"Wir konnten zeigen, dass das Antibiotikum Linezolid einen Teil der Stelle A im katalytischen Zentrum blockiert, so dass die tRNA dort nicht mehr richtig andocken kann", erklärt Wilson. Die Folge: es kann keine weitere Aminosäure an die bereits bestehende Kette angehängt werden, die Proteinsynthese ist unterbrochen. "Überraschenderweise ist das aber noch nicht alles", ergänzt Wilson. "Linezolid schafft es gleichzeitig, das gesamte Ribosom quasi abzuschalten - es hält also nicht nur das Fließband an, sondern schließt gleich die ganze Fabrik."

Möglich wurde diese Beobachtung durch die Röntgenstrukturanalyse. Dafür wurden in Linezolid getränkte bakterielle Ribosomen zunächst kristallisiert und diese Ribosomen-Kristalle dann Röntgenstrahlen ausgesetzt. Aus dem Muster der an den Atomen gebeugten Strahlen konnten die Forscher dreidimensionale Bilder von der Wirkungsweise des Linezolids errechnen.

Ähnlich wie Linezolid können auch andere Umwelteinflüsse in einem Ribosom Stress verursachen und das Weiterlaufen des Fließbandes in der Proteinfabrik stören: Entweder wird dann eine falsche Aminosäure eingebaut oder das Ribosom ganz lahm gelegt. Um dies zu verhindern hat das Fließband in den Ribosomen von Bakterien eine Art Rückspulfunktion, die durch den Translokationsfaktor LepA in Gang gesetzt wird. So kann im Ribosom ein weiteres Mal versucht werden, den Prozess der Proteinbildung entsprechend der vorliegenden Bauanleitung abzuschließen.

Wie die Gruppen um Wilson und Fucini zusammen mit Forschern um Professor Christian Spahn von der Charité Berlin und Professor Knud Nierhaus vom Max-Planck-Institut für molekulare Genetik in Berlin im Fachblatt Nature Structural & Molecular Biology (NSMB) schreiben, konnten sie in einer zweiten Studie zeigen, wie dieses Zurückspulen vonstatten geht. Dabei entdeckten sie, dass für den durch LepA in Gang gesetzten Prozess noch ein weiterer, bisher unbekannter Platz im Ribosom zur Anlagerung von tRNA verwendet wird. Dieser Platz kommt noch vor der Stelle A. "Er gleicht dem nicht vollständigen Andocken der tRNA, wenn Linezolid einen Teil von A blockiert", sagt Wilson. "Das erklärt auch, warum LepA diejenigen Ribosomen erkennt und an diese bindet, welche zuvor durch Linezolid lahm gelegt wurden."

Publikationen:
"The oxazolidinone antibiotics perturb the ribosomal peptidyl-transferase center and effect tRNA positioning"
Daniel N. Wilson, Frank Schlünzen, Jörg M. Harms, Agata L. Starosta, Sean R. Connell, and Paola Fucini
Proceedings of the National Academy of Sciences (PNAS)
doi: 10.1073/pnas.0804276105
"A new tRNA intermediate revealed on the ribosome during EF4-mediated back-translocation"
Sean R. Connell, Maya Topf, Yan Qin, Daniel N. Wilson, Thorsten Mielke, Paola Fucini, Knud H. Nierhaus & Christian M T Spahn
Nature Structural & Molecular Biology
doi: 10.1038/nsmb.1469
Ansprechpartner:
Dr. Daniel Wilson
Genzentrum
Feodor-Lynen-Str. 25
81377 München
Tel.: 089 / 2180 - 76902
E-Mail: wilson@lmb.uni-muenchen.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Kobold in der Zange
17.01.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen
16.01.2018 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

Fachtagung analytica conference 2018

15.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Projekt "HorseVetMed": Forscher entwickeln innovatives Sensorsystem zur Tierdiagnostik

17.01.2018 | Agrar- Forstwissenschaften

Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt

17.01.2018 | Physik Astronomie

Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

17.01.2018 | Physik Astronomie