Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kalkbildung – ein Auslaufmodell für einzelliges Phytoplankton?

14.07.2016

Coccolithophoriden, einzelliges Phytoplankton, das eine wichtige Rolle für die Stoffkreisläufe im Ozean, für das marine Nahrungsnetz und für das globale Klima spielt, schützt sich durch verschiedenartig geformte Kalkstrukturen vor Fraßfeinden und Schäden. Doch die Kalkbildung kostet die Einzeller viel Energie. Der Preis für die kunstvolle Armierung könnte bei fortschreitendem Klimawandel sogar noch steigen. Mit Hilfe eines neuartigen Modells analysierte ein internationales Forscherteam unter Beteiligung des GEOMAR Helmholtz-Zentrums für Ozeanforschung Kiel Kosten und Nutzen der Kalkbildung.

Sie hüllen sich in undurchdringliche Schuppenpanzer, bewehren ihr Äußeres mit spitzen Stacheln, entfalten Sonnenschirme oder strecken trompetenförmige Sammeltrichter nach dem Licht aus – Coccolithophoriden, einzellige kalkbildende Phytoplankton-Arten, umgeben ihr Inneres mit verschiedenartigsten Schalen.


Mikroskopaufnahme verschiedener Coccolithophoriden: : (A) Coccolithus pelagicus, (B) Calcidiscus leptoporus, (C) Braarudosphaera bigelowii, (D) Gephyrocapsa oceanica, (E) E. huxleyi, (F) Discosphaera

Abbildung: Fanny M. Monteiro et al. Sci Adv 2016;2:e1501822

Um die Frage nach dem Zweck der kunstvollen Gebilde zu beantworten, fügten Forschende aus Deutschland, Großbritannien, Frankreich und den Vereinigten Staaten Ergebnisse von Studien zur Evolutionsgeschichte und Zellbiologie sowie aus Labor- und Freilandexperimenten zusammen.

Denn nur, wer versteht, weshalb diese Organismen ihre Kalkschalen aufbauen, kann auch abschätzen, inwieweit sie unter den Folgen des globalen Wandels leiden werden. Mit Hilfe eines neuartigen Modells untersuchte das internationale Team den Energieaufwand und Vorteile, die die Einzeller durch die Kalkbildung gewinnen. Die Ergebnisse sind in der aktuellen Ausgabe des Fachmagazins Science Advances veröffentlicht.

„Vermutlich schützten sich die Algen mit ihrer Kalkschale ursprünglich vor allem vor Fressfeinden. Weil die verschiedenen Strukturen noch andere Vorteile mit sich brachten, entstand eine Vielzahl von Formen, die diese Vorteile weiter ausnutzten“, erklärt Prof. Ulf Riebesell, Meeresbiologe am GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel und Co-Autor der Studie. Bisher zahlte sich der hohe Energieaufwand für die Kalzifizierer aus: „Coccolithophoriden haben mehr als 200 Millionen Jahre überlebt. Jetzt ist fraglich, ob sie auch dem Klimawandel standhalten“, so Prof. Riebesell.

Die rund 200 Coccolithophoriden-Arten produzieren bis zu zehn Prozent der Biomasse in den Weltmeeren und halten den marinen Kohlenstoffkreislauf in Schwung. Beschwert mit ihren Kalkplättchen sinkt organisches Material zum Ozeanboden. So kann neues Kohlendioxid aus der Atmosphäre in höhere Wasserschichten aufgenommen und dort verarbeitet werden. Zudem setzen Coccolithophoriden das klimakühlende Gas Dimethylsulfid (DMS) frei – ein weiterer „Service“, der dazu beiträgt, das Klima zu stabilisieren.

Ob die einzelligen Multitalente ihre Funktionen auch in Zukunft erfüllen können, hängt davon ab, wie viel zusätzliche Energie sie für die Kalkbildung aufbringen müssen und wie ihre Konkurrenten im Nahrungsnetz ihrerseits auf den Ozeanwandel reagieren. Wenn durch die noch immer zunehmenden Emissionen zusätzliches Kohlendioxid im Meerwasser gelöst wird, steht auch mehr für die Photosynthese zur Verfügung – sie wird leicht stimuliert. Andererseits erschwert der verringerte pH-Wert die Kalkbildung.

„Coccolithophoriden werden im Vergleich zu anderen Plankton-Organismen eher benachteiligt sein. Ihr Rückgang hätte auch Auswirkungen auf das Klimasystem“, fasst Dr. Lennart Bach, zweiter Ko-Autor der Studie vom GEOMAR, zusammen. „Modellrechnungen wie unser neuer Ansatz sind daher wichtig, um auszuloten, wie sich ein erhöhter Energieaufwand, wie hier bei der Kalkbildung, in Zukunft auf die Organismen auswirken wird und welche Konsequenzen dies für die Planktongemeinschaft haben wird. So schlagen wir den Bogen von Einzelorganismen auf das gesamte System.“

Originalveröffentlichung:
Monteiro, F.M., Bach, L.T., Brownlee, C., Bown, P., Rickaby, R.E.M., Poulton, A.J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S., Gutowska. M.A., Lee, R., Riebesell, U., Young, J., Ridgwell, A. (2016): Why marine phytoplankton calcify. Science Advances, doi: 10.1126/sciadv.1501822

BIOACID in Kürze
BIOACID in Kürze: Unter dem Dach von BIOACID (Biological Impacts of Ocean Acidification) untersuchen zehn Institute, wie marine Lebensgemeinschaften auf Ozeanversauerung reagieren und welche Konsequenzen dies für das Nahrungsnetz, die Stoff- und Energieumsätze im Meer sowie schließlich auch für Wirtschaft und Gesellschaft hat. Das Projekt begann 2009 und ging im Oktober 2015 in die dritte, finale Förderphase. BIOACID wird vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Die Koordination liegt beim GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel. Eine Liste der Mitglieds-Institutionen, Informationen zum wissenschaftlichen Programm und den BIOACID-Gremien sowie Fakten zur Ozeanversauerung sind auf der Website www.bioacid.de zu finden.

Weitere Informationen:

http://www.bristol.ac.uk University of Bristol
http://www.mba.ac.uk Marine Biological Association
http://www.ucl.ac.uk University College London
http://www.ox.ac.uk University of Oxford
http://noc.ac.uk National Oceanography Centre
http://www.cerege.fr Centre Européen de Recherche et d’Enseignement des Géosciences de l’Environnement (CEREGE)
http://web.mit.edu Massachusetts Institute of Technology
http://www.mbari.org Monterey Bay Aquarium Research Institute

Dr. Andreas Villwock | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics