Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Käfer "hört", wenn es brennt

13.08.2008
Der schwarze Kiefernprachtkäfer mag es heiß: Seine Larven ernähren sich am liebsten von frisch verbranntem Holz, das er mit Hilfe spezieller Infrarotsensoren aufspürt.

Sie basieren vermutlich auf einem für die Infrarotsensorik sehr ungewöhnlichen Funktionsprinzip: Der Käfer scheint Feuer gewissermaßen zu "hören". Wissenschaftler der Universität Bonn und des Forschungszentrums caesar haben für diese These nun neue Beweise vorgelegt (The Journal of Experimental Biology 211, 2576-2583).

Der Sinn des Prachtkäfers fürs Brenzlige ist im Insektenreich nicht gerade weit verbreitet: Die Wissenschaft kennt gerade einmal vier Gattungen, die diese Fähigkeit haben. Der schwarze Kiefernprachtkäfer hat von ihnen den ausgeklügeltsten Sensor: Angeblich kann er damit noch aus 80 Kilometern Entfernung Waldbrände aufspüren. Auf diese Zahl mag sich der Bonner Zoologe Professor Dr. Helmut Schmitz zwar nicht festlegen. "Der Sensor ist aber in der Tat extrem empfindlich", sagt er.

Zudem reagiert der Käfersensor etwa fünfmal schneller als technische Infrarot-Fühler. Grund ist das einzigartige Funktionsprinzip, das Schmitz und seine Kollegen vom Forschungszentrum caesar nun weiter aufgeklärt haben: Demnach wird der Wärmereiz zunächst in eine Druckerhöhung umgewandelt, die der Käfer dann registriert. Die Sinneszelle, mit der er das tut, ist ein typischer Mechanorezeptor, wie er beispielsweise auch im vielen Gehörorganen von Insekten Einsatz kommt, beispielsweise bei Heuschrecken und Grillen. Auch dort werden schließlich Druckschwankungen gemessen. "Der Käfer 'hört' die Infrarotstrahlung gewissermaßen", erläutert Schmitz.

Die druckempfindliche Spitze der mechanischen Sinneszelle ist in einen winzigen runden Druckbehälter eingebettet, dessen Wand wie auch der Insektenpanzer aus Kutikula besteht. In dem Druckbehälter befinden sich einige hundertmilliardstel Milliliter Wasser. Bei Bestrahlung mit Infrarotlicht der passenden Wellenlänge erwärmt sich die Kutikula und gibt die Wärmeenergie an die Flüssigkeit weiter, die selber auch stark im mittleren Infrarot absorbiert.

Sie dehnt sich schlagartig aus, wodurch sich der Druck im Kutikulabehälter erhöht. Dadurch verformt sich die Spitze der Sinneszelle: In ihr öffnen sich Kanäle, durch die elektrisch geladene Ionen strömen. Diese Spannungsänderungen registriert der Käfer - und das schon wenige Tausendstel Sekunden nach dem Infrarot-Puls. "Das Ganze funktioniert hydraulisch und damit fast verzögerungsfrei - ähnlich wie im Auto, wenn Sie aufs Bremspedal steigen", erklärt Schmitz.

Der letzte Beweis für dieses Funktionsprinzip steht noch aus. Doch die Anhaltspunkte mehren sich, dass Schmitz und seine Kollegen richtig liegen. So weisen sie in der jetzt erschienenen Publikation nach, dass die Wand des Druckbehälters extrem fest ist. Das ist eine Voraussetzung dafür, dass die Messhydraulik überhaupt funktioniert. "Der Behälter hat nur eine einzige weiche Stelle: Nämlich die Spitze der Sinneszelle, die wie ein Handschuhfinger in ihn hineinragt. Wenn sich das erwärmte Wasser ausdehnt, drückt es diese winzige fingerförmige Struktur zusammen - es gibt ja keine andere Stelle, wohin es ausweichen könnte."

Der Druckbehälter ist so winzig, dass die Messungen nur mit modernsten materialwissenschaftlichen Methoden durchgeführt werden konnten: Die Kugel ist nur ein Drittel so dick wie ein Haar.

Kontakt:
Prof. Dr. Helmut Schmitz
Institut für Zoologie der Universität Bonn
Telefon: 0228/73-2071
E-Mail: h.schmitz@uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verteidigung um fast jeden Preis
14.12.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten