Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Käfer, die nach Senf schmecken - Kohlerdflöhe schlagen Wirtspflanzen mit ihren eigenen Waffen

08.05.2014

Kohlerdflöhe gehören zu den Flohkäfern und sind sind bedeutende Schädlinge an Kohlgemüse, aber auch anderen Kreuzblütengewächsen wie Senf, Meerrettich oder Raps.

Diese Pflanzen nutzen gegen Fraßfeinde ein ausgeklügeltes Abwehrsystem, das als Senföl-Bombe bekannt ist: Wird pflanzliches Gewebe verletzt, kommen Senfölglycoside und ein Enzym, welches als Myrosinase bezeichnet wird, miteinander in Kontakt und es entstehen giftige, die meisten Insekten abschreckende Abbauprodukte.


Ein Kohlerdfloh (Phyllotreta striolata) frisst an Blättern eines Chinakohls (Brassica rapa). Der Schädling richtet vor allem an jungen Pflanzen fast aller Kreuzblütengewächse große Schäden an.

Christian Ulrichs / Humboldt-Universität zu Berlin


Obwohl Kohlerdflöhe mit ihren Beißwerkzeugen das Pflanzengewebe verletzen, greift die pflanzliche Verteidigung in Form der Senföl-Bombe bei diesen Tieren nicht.

Christian Ulrichs / Humboldt-Universität zu Berlin

Dieser Verteidigungsmechanismus ist bei Kohlerdflöhen jedoch wirkungslos, wie Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena nachweisen konnten.

Fast alle pflanzenfressenden Insekten haben sich auf bestimmte Wirtspflanzen spezialisiert und an deren chemische Abwehrstoffe angepasst. Kohlerdflöhe gehören zu den Flohkäfern und sind sind bedeutende Schädlinge an Kohlgemüse, aber auch anderen Kreuzblütengewächsen wie Senf, Meerrettich oder Raps.

Diese Pflanzen nutzen gegen Fraßfeinde ein ausgeklügeltes Abwehrsystem, das als Senföl-Bombe bekannt ist: Wird pflanzliches Gewebe verletzt, kommen Senfölglycoside und ein Enzym, welches als Myrosinase bezeichnet wird, miteinander in Kontakt und es entstehen giftige, die meisten Insekten abschreckende Abbauprodukte.

Dieser Verteidigungs-mechanismus ist bei Kohlerdflöhen jedoch wirkungslos, wie Wissenschaftler des Max-Planck-Instituts für chemische Ökologie in Jena nachweisen konnten. Kohlerdflöhe können die Senfölglycoside der Pflanze im Körper einlagern, ohne dass das pflanzliche Enzym die Senföl-Bombe aktivieren kann. Vielmehr besitzt das Insekt sogar eine eigene Myrosinase und kann somit diese Abwehrstoffe für eigene Zwecke nutzen. Die Senföl-Bombe der Käfer schreckt wahrscheinlich ihre eigenen Feinde ab. (Proceedings of the National Academy of Sciences of the USA, Mai 2014, doi: 10.1073/pnas.1321781111)

Pflanzen wehren sich durch ein vielfältiges Arsenal an chemischen Substanzen, sogenannten sekundären Pflanzenstoffen, gegen ihre Fraßfeinde. Viele Insekten haben sich jedoch im Gegenzug an die Abwehr einzelner Pflanzen angepasst und können daher problemlos an ihnen fressen. Das „Wettrüsten“ von Pflanzen und Insekten ist der Grund dafür, dass im Laufe der Koevolution dieser beiden Großmächte eine erstaunliche Vielfalt von Arten entstanden ist. Manche Insekten machen sich sogar Pflanzeninhaltsstoffe für die eigene Verteidigung zunutze, wie beispielsweise Blattkäfer oder Tabakschwärmer.

Franziska Beran, Leiterin der Forschungsgruppe „Sequestrierung und Detoxifizierung in Insekten“ am Max-Planck-Institut für chemische Ökologie in Jena, erforscht mit ihren Kollegen Kohlerdflöhe (Phyllotreta). Die kleinen Käfer, deren Name auf ihr erstaunliches Sprungvermögen zurückzuführen ist, fressen viele kleine Löcher in die noch jungen Blätter sämtlicher Kohlgemüsearten und sind deshalb bei Gärtnern und Landwirten gefürchtet. Bevor sie 2008 mit ihrer Promotion an der Humboldt-Universität zu Berlin begann, absolvierte die junge Wissenschaftlerin ein Praktikum am AVRDC-The World Vegetable Center in Taiwan, wo sie erstmals mit diesem Käfer, der in Südostasien verheerende Schäden im Kohlgemüseanbau verursacht, in Kontakt kam.

In ihrer Doktorarbeit stand daher die Frage im Mittelpunkt, wie sich diese Schädlinge mit Hilfe von Lockstoffen und Pflanzenduftstoffen auf ihren Wirtspflanzen versammeln. Dabei fand sie heraus, dass die männlichen Käfer einen Duft abgeben, der Artgenossen anlockt, allerdings nur in Verbindung mit Pflanzenduftstoffen. Sie konzentrierte sich in ihren Untersuchungen vor allem auf die Abbauprodukte der Senfölglycoside, die für den typischen Kohlgeruch verantwortlich sind.

Für die aktuelle Arbeit, verglichen die Forscher die Senfölglycoside in den Wirtspflanzen mit den flüchtigen Abbauprodukten, die entstehen, wenn Käfer beim Fressen das Pflanzengewebe verletzen. Dieses Zwei-Komponenten-System, bestehend aus Senfölglycosid (Glucosinolat) und dem spaltenden Enzym Myrosinase, wird auch als Senföl-Bombe bezeichnet, weil die Abbauprodukte giftig sind. Das Glucosinolat-Myrosinase-System ist normalerweise eine hochwirksame Verteidigungsstrategie von Kohlpflanzen gegen ihre Fraßfeinde.

Die Untersuchungen ergaben, dass bei Befall durch die Käfer zwar flüchtige Abbauprodukte vorhanden sind, diese allerdings nicht von der Pflanze stammen können. Die Wissenschaftler vermuteten deshalb, dass die Käfer selbst imstande sind, flüchtige Glucosinolat-Abbauprodukte abzugeben. In weiteren Analysen konnten die Forscher nachweisen, dass Kohlerdflöhe Senfölglycoside in ihrem Körper anreichern können, und zwar bis zu einer Menge, die fast 2% ihres Körpergewichts entspricht.

Obwohl Kohlpflanzen viele verschiedene Senfölglycoside enthalten, nehmen die Käfer nur ganz bestimmte dieser Substanzen auf. Erstaunt hat Franziska Beran jedoch vor allem, dass die Insekten eine eigene Myrosinase haben: „Die Käfer haben ihr eigenes aktivierendes Enzym entwickelt, welches auch spezifisch die Senfölglycoside abbaut, die sie hauptsächlich angereichert haben.“

Die Forschungsergebnisse weisen darauf hin, dass Kohlerdflöhe nicht nur die Senföl-Bombe ihrer Wirtspflanze unbeschadet überstehen, sondern die selektiv angereicherten Senfölglycoside für eigene Zwecke nutzen können. Von Blattläusen ist eine solche Vorgehensweise bereits bekannt. Im Gegensatz zu Blattläusen, die Pflanzensaft aus dem Blatt saugen und dabei einzelne Zellen anstechen, sind Kohlerdflöhe jedoch kauende Insekten, die Pflanzengewebe verletzen und damit eigentlich die pflanzliche Senföl-Bombe aktivieren müssten. Die Wissenschaftler rätseln bislang noch, wie die Käfer intakte Senfölglycoside aufnehmen können und wodurch die pflanzliche Myrosinase möglicherweise außer Kraft gesetzt wird.

Sie wollen nun klären, wo die Käfer die Senfölglycoside speichern, wie sie ihre eigene Senföl-Bombe mit der Käfer-Myrosinase kontrollieren und warum sie Glucosinolat-Abbauprodukte bilden können, ohne dabei selbst vergiftet zu werden. Spannend ist insbesondere die Frage, warum die Käfer die Senfölglycoside aufnehmen und deren Abbau mit einem eigenen Enzym steuern: „Auf der einen Seite könnten entweder die Senfölglycoside selbst oder deren Abbauprodukte eine Rolle bei der Kommunikation mit Artgenossen spielen. Andererseits könnten sie auch eine wichtige Funktion bei der Verteidigung gegen eigene Fraßfeinde haben,“ vermutet Franziska Beran. Sie denkt dabei auch an die Käferlarven, die im Boden leben und an den Wurzeln fressen. Dort sind sie einer Reihe von Feinden ausgesetzt, sodass eine gute chemische Verteidigung von Vorteil sein kann.

Welche ökologische Bedeutung die Anreicherung von Senfölglycosiden in diesem Schädling hat, sollen nun auch Verhaltensstudien mit den Käfern klären. Ein grundlegendes Verständnis der Anpassung von Schadinsekten an die chemische Verteidigung von Pflanzen soll dazu beitragen, das immer wieder vorkommende massenhafte Auftreten von Schädlingen in der Landwirtschaft besser zu verstehen und zu kontrollieren. [AO/FB]

Originalveröffentlichung:
Beran, F., Pauchet, Y., Kunert, G., Reichelt, M., Wielsch, N., Vogel, H., Reinecke, A., Svatoš, A., Mewis, I., Schmid, D., Ramasamy, S., Ulrichs, C., Hansson, B. S., Gershenzon, J., Heckel, D. G. (2014). Phyllotreta striolata flea beetles utilize host plant defense compounds to create their own glucosinolate-myrosinase system. Proceedings of the National Academy of Sciences of the United States of America. doi: 10.1073/pnas.1321781111
http://www.pnas.org/cgi/doi/10.1073/pnas.1321781111

Weitere Informationen:
Dr. Franziska Beran, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena. Tel. +49 3641 57-1553, E-Mail fberan@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1105.html?&L=1

Angela Overmeyer | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie