Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

K2P-Kanäle - vom Molekül zur Physiologie und Pathophysiologie

11.08.2008
Marburger Physiologe Jürgen Daut Sprecher der neuen DFG Forschergruppe über Kaliumkanäle

Die Deutsche Forschungsgemeinschaft (DFG) hat eine überregionale Forschergruppe (FOR 1086) eingerichtet.

Die Forschergruppe befasst sich mit dem Thema "K2P-Kanäle - vom Molekül zur Physiologie und Pathophysiologie"; es sind sowohl Grundlagenforscher als auch Kliniker aus Marburg, Münster, Jena, Würzburg und Regenburg beteiligt. Sprecher der Forschergruppe ist der Marburger Physiologe Professor Jürgen Daut, sein Stellvertreter ist Professor Thomas Budde aus Münster.

Die K2P-Kanäle sind die zuletzt entdeckte Gruppe von Kaliumkanälen. Im menschlichen Genom gibt es 15 verschiedene K2P-Kanal-Gene, fünf davon wurden zuerst von Mitgliedern der AG Zellphysiologie am Institut für Physiologie und Pathophysiologie der Universität Marburg gefunden und charakterisiert.

Die K2P-Kanäle sind Ionenkanäle, die ausschließlich für Kaliumionen durchlässig sind. Der Name der K2P-Kanäle leitet sich aus der Tatsache ab, dass in dem Kanalprotein zwei sogenannte Porendomänen vorhanden sind. Der Ionenkanal bildet jedoch nur eine einzige Pore, welche die Zellmembran überbrückt; die Pore besteht aus zwei K2P-Kanal Molekülen und wird durch insgesamt vier "Porendomänen" begrenzt.

Die Membran der Zellen unseres Körpers ist normalerweise für geladene Teilchen, wie zum Beispiel Natrium-, Chlorid- oder Kaliumionen, undurchlässig. Ionenkanäle bilden Poren in der Zellmembran, durch die bestimmte Ionen hindurch treten können, je nachdem ob die entsprechenden Kanäle geöffnet sind oder nicht.

Das Öffnen bzw. Schließen dieser ionenselektiven Kanäle steuert die Funktion der Zellen und damit die Funktion der Organe bzw. des ganzen Organismus. Die K2P-Kanäle werden auf sehr komplexe Weise reguliert; sie werden durch Neurotransmitter, durch Fettsäuren und andere Lipide, durch mechanische Dehnung der Membran, durch Temperaturänderung sowie zahlreiche andere Mechanismen aktiviert oder gehemmt. K2P-Kanäle sind in vielen Nervenzellen unseres Gehirns vorhanden. Einige der K2P-Kanäle werden durch Inhalationsanästhetika, also die Medikamente, die bei Narkose zum Verlust des Bewusstseins führen, aktiviert; die Aktivierung dieser Kanäle bestimmten Zellen des Zwischenhirns vermindert die Erregbarkeit dieser Zellen und löst dadurch wahrscheinlich die Narkosewirkung aus.

K2P Kanäle spielen aber auch im Herzen, in den Blutgefäßen, in den hormonproduzierenden Zellen der Nebenniere und vielen anderen Zellen unseres Körpers eine wichtige Rolle. In den letzten Jahren hat sich herausgestellt, dass K2P-Kanäle potentielle Zielproteine für Medikamente sind und dass sich daraus neue strategische Möglichkeiten zur Behandlung einer Reihe von Krankheiten bieten. Die klinisch relevanten Prozesse, an denen diese Ionenkanäle beteiligt sind, umfassen unter anderem Anästhesie, Epilepsie, Schmerz¬wahrnehmung, Atmungsregulation, Herzrhythmusstörungen, Hypertonie, Arteriosklerose, Störungen der Hormonsekretion und bestimmte Krebsformen.

Die jetzt von der DFG eingerichtete Forschergruppe führt die in Deutschland auf diesem Gebiet profiliertesten Arbeitsgruppen zu einem gemeinsamen Projekt zusammen: die Aufklärung der Funktion der K2P-Kanäle, von der Genetik und der Molekülstruktur bis hin zur Rolle der Kanäle bei der Entstehung verschiedener Krankheiten. Die Marburger Mitglieder der Forschergruppe sind PD Dr. Niels Decher und Prof. Dr. Jürgen Daut vom Institut für Physiologie und Pathophysiologie sowie PD Dr. Ralf Köhler und Prof. Dr. Joachim Hoyer aus der Klinik für Innere Medizin, Schwerpunkt Nephrologie, des Universitätsklinikums Giessen und Marburg.

"Die Expertise der sechs Antragsteller ergänzt sich hervorragend und die beteiligten Wissenschaftler verstehen sich auch persönlich sehr gut, so dass ich erwarte, dass die Einrichtung der DFG-Forschergruppe eine ganze Reihe produktiver Kooperationen ermöglichen wird", erklärte Prof. Daut.

Einzelheiten über die geplanten Forschungsprojekte sind auf der Website der Forschergruppe zu finden: http://web.uni-marburg.de/physiology/for1086/index.html

Weitere Informationen:
Ansprechpartner ist Prof. Dr. Jürgen Daut (Fachbereich Medizin, Institut für Physiologie und Pathophysiologie der Philipps-Universität Marburg).
Telefon: 06421 28-66494
E-Mail: jdaut@staff.uni-marburg.de

Viola Düwert | idw
Weitere Informationen:
http://web.uni-marburg.de/physiology/for1086/index.html

Weitere Berichte zu: DFG Ionenkanal K2P-Kanäle Kaliumionen Membran Molekül Pathophysiologie Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hemmung von microRNA-29 schützt vor Herzfibrosen
20.11.2017 | Technische Universität München

nachricht Satellitenbilder zur Erfassung von Biodiversität nur bedingt tauglich
20.11.2017 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie