Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JUMP-1 – ein magnetisches Polymer aus Jena

28.06.2017

Chemiker der Friedrich-Schiller-Universität Jena haben ein magnetisches mikroporöses Koordinationspolymer entwickelt, dessen Sorptionseigenschaften sich „an-“ bzw. „abschalten“ lassen. Bei der Substanz mit dem Namen „Jena University Magnetic Polymer“ (JUMP) handelt es sich um ein regelmäßig strukturiertes dreidimensionales Gerüst, das von Nano-Poren durchzogen ist. In diese nur etwa ein Nanometer großen Hohlräume lassen sich verschiedene chemische Moleküle einlagern und so die Eigenschaften des Grundgerüstes steuern. Das neuartige Material bietet daher Potenzial für Anwendungen beispielsweise als chemischer Sensor oder Katalysatorsubstanz für chemische Synthesen.

Es sind nur wenige kleine Kristalle, die Chemiker Oluseun Akintola von der Friedrich-Schiller-Universität Jena in einem Glasgefäß ins Licht hält. Violett schimmern die Polymer-Krümel, die ansonsten wenig spektakulär aussehen. Das Besondere an ihnen, so erklärt der nigerianische Doktorand vom Lehrstuhl für Anorganische Chemie II, stecke im Detail.


Chemiker Oluseun Akintola von der Universität Jena zeigt eine Probe des "Jena University Magnetic Polymer" – kurz JUMP.

Foto: Jan-Peter Kasper/FSU


Chemiker Oluseun Akintola hat das "Jena University Magnetic Polymer" im Rahmen seiner Promotionsarbeit an der Uni Jena entwickelt und charakterisiert.

Foto: Jan-Peter Kasper/FSU

„Die Kristalle verfügen über eine immense innere Oberfläche“, so der Stipendiat des Villigst Studienwerks. Ein Gramm des Materials, das auf einem Teelöffel platzfindet, weist eine Porenfläche von gut 150 Quadratmetern auf. Das „Jena University Magnetic Polymer“ – kurz JUMP – hat Oluseun Akintola im Rahmen seiner Doktorarbeit am Lehrstuhl von Prof. Dr. Winfried Plass mit den dortigen Kollegen entwickelt und charakterisiert. In der Fachzeitschrift „CrystEngComm“ der Royal Society of Chemistry stellen die Chemiker die Substanz JUMP-1 vor (DOI: 10.1039/c7ce00369b), zu der das Team von Prof. Plass auch das Cover gestaltet hat.

Neben seiner inneren Größe besitzt das poröse Polymer als zweite Besonderheit magnetische Eigenschaften. „Diese sind zudem potenziell schaltbar, das heißt wir untersuchen aktuell chemische Modifikationen des Polymers, die den magnetischen Charakter des Materials an- bzw. ausschalten“, erläutert Prof. Plass.

Bei dem Material handelt es sich um Schichten eines zweidimensionalen Netzwerkes aus einer magnetischen Cobaltverbindung, die über regelmäßig angeordnete Verbindungsmoleküle verbrückt sind. „Dadurch ergibt sich ein dreidimensionaler Kristall, der zu mehr als 50 Prozent seines Volumens aus Hohlräumen besteht“, so Plass weiter.

In diese Hohlräume können sich verschiedene kleine Ionen oder Moleküle einlagern. „Je nach Eigenschaften dieser Gastmoleküle verändern sich die Eigenschaften des Polymers“, erläutert Prof. Plass.

Solche porösen Gerüststoffe oder MOFs (Metall-Organic Frameworks) sind keine Jenaer Erfindung, sondern in unterschiedlichster Form bereits seit einigen Jahren gängig. Neu an JUMP-1 ist jedoch, dass die Brückenmoleküle redoxaktiv sind, sie können einzelne Elektronen abgeben und erlauben dadurch die magnetischen Eigenschaften der Schichten aus Cobaltionen anzusteuern.

Zudem lassen sich in das insgesamt negativ geladene Polymergerüst positiv geladene Gegenionen gezielt einbauen, die ihrerseits das Aufnahmevermögen des Gittergerüsts für Gastmoleküle regulieren und gewissermaßen die „Tür“ zu den Poren gezielt öffnen und schließen. „Auf diese Weise können wir das Polymer je nach möglicher Anwendung konfektionieren“, macht Prof. Plass deutlich.

Anwenden lassen sich zukünftige schaltbare magnetische Materialien beispielsweise als hochempfindliche Sensoren für kleine geladene Moleküle. Dank ihrer immensen inneren Oberfläche könnten solche Polymere auch als Katalysatorsubstanzen für chemische Reaktionen nützlich sein. Von JUMP-1, dem magnetischen Polymer aus Jena, so erwarten die Chemiker um Prof. Plass, werde also noch zu hören sein.

Original-Publikation:
Akintola O. et al. A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties, CrystEngComm, 2017,19, 2723-2732 (10.1039/C7CE00369B)

Kontakt:
Prof. Dr. Winfried Plass, Oluseun Akintola
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstr. 8, 07743 Jena
Tel.: 03641 / 948130
E-Mail: Sekr.Plass[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Sehen, hören und fühlen in der Nanowelt
20.11.2017 | Technische Universität Chemnitz

nachricht Wirkstoff hilft „Mondschein-Zellen“ bei DNA-Reparatur
20.11.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Anwender-Workshops „Laserbearbeitung von Faserverbundwerkstoffen“

20.11.2017 | Seminare Workshops

Hand aufs Herz - was wissen wir über herzgesunde Lebensmittel?

20.11.2017 | Unternehmensmeldung

Transparente Beschichtung für Alltagsanwendungen

20.11.2017 | Materialwissenschaften