Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

JUMP-1 – ein magnetisches Polymer aus Jena

28.06.2017

Chemiker der Friedrich-Schiller-Universität Jena haben ein magnetisches mikroporöses Koordinationspolymer entwickelt, dessen Sorptionseigenschaften sich „an-“ bzw. „abschalten“ lassen. Bei der Substanz mit dem Namen „Jena University Magnetic Polymer“ (JUMP) handelt es sich um ein regelmäßig strukturiertes dreidimensionales Gerüst, das von Nano-Poren durchzogen ist. In diese nur etwa ein Nanometer großen Hohlräume lassen sich verschiedene chemische Moleküle einlagern und so die Eigenschaften des Grundgerüstes steuern. Das neuartige Material bietet daher Potenzial für Anwendungen beispielsweise als chemischer Sensor oder Katalysatorsubstanz für chemische Synthesen.

Es sind nur wenige kleine Kristalle, die Chemiker Oluseun Akintola von der Friedrich-Schiller-Universität Jena in einem Glasgefäß ins Licht hält. Violett schimmern die Polymer-Krümel, die ansonsten wenig spektakulär aussehen. Das Besondere an ihnen, so erklärt der nigerianische Doktorand vom Lehrstuhl für Anorganische Chemie II, stecke im Detail.


Chemiker Oluseun Akintola von der Universität Jena zeigt eine Probe des "Jena University Magnetic Polymer" – kurz JUMP.

Foto: Jan-Peter Kasper/FSU


Chemiker Oluseun Akintola hat das "Jena University Magnetic Polymer" im Rahmen seiner Promotionsarbeit an der Uni Jena entwickelt und charakterisiert.

Foto: Jan-Peter Kasper/FSU

„Die Kristalle verfügen über eine immense innere Oberfläche“, so der Stipendiat des Villigst Studienwerks. Ein Gramm des Materials, das auf einem Teelöffel platzfindet, weist eine Porenfläche von gut 150 Quadratmetern auf. Das „Jena University Magnetic Polymer“ – kurz JUMP – hat Oluseun Akintola im Rahmen seiner Doktorarbeit am Lehrstuhl von Prof. Dr. Winfried Plass mit den dortigen Kollegen entwickelt und charakterisiert. In der Fachzeitschrift „CrystEngComm“ der Royal Society of Chemistry stellen die Chemiker die Substanz JUMP-1 vor (DOI: 10.1039/c7ce00369b), zu der das Team von Prof. Plass auch das Cover gestaltet hat.

Neben seiner inneren Größe besitzt das poröse Polymer als zweite Besonderheit magnetische Eigenschaften. „Diese sind zudem potenziell schaltbar, das heißt wir untersuchen aktuell chemische Modifikationen des Polymers, die den magnetischen Charakter des Materials an- bzw. ausschalten“, erläutert Prof. Plass.

Bei dem Material handelt es sich um Schichten eines zweidimensionalen Netzwerkes aus einer magnetischen Cobaltverbindung, die über regelmäßig angeordnete Verbindungsmoleküle verbrückt sind. „Dadurch ergibt sich ein dreidimensionaler Kristall, der zu mehr als 50 Prozent seines Volumens aus Hohlräumen besteht“, so Plass weiter.

In diese Hohlräume können sich verschiedene kleine Ionen oder Moleküle einlagern. „Je nach Eigenschaften dieser Gastmoleküle verändern sich die Eigenschaften des Polymers“, erläutert Prof. Plass.

Solche porösen Gerüststoffe oder MOFs (Metall-Organic Frameworks) sind keine Jenaer Erfindung, sondern in unterschiedlichster Form bereits seit einigen Jahren gängig. Neu an JUMP-1 ist jedoch, dass die Brückenmoleküle redoxaktiv sind, sie können einzelne Elektronen abgeben und erlauben dadurch die magnetischen Eigenschaften der Schichten aus Cobaltionen anzusteuern.

Zudem lassen sich in das insgesamt negativ geladene Polymergerüst positiv geladene Gegenionen gezielt einbauen, die ihrerseits das Aufnahmevermögen des Gittergerüsts für Gastmoleküle regulieren und gewissermaßen die „Tür“ zu den Poren gezielt öffnen und schließen. „Auf diese Weise können wir das Polymer je nach möglicher Anwendung konfektionieren“, macht Prof. Plass deutlich.

Anwenden lassen sich zukünftige schaltbare magnetische Materialien beispielsweise als hochempfindliche Sensoren für kleine geladene Moleküle. Dank ihrer immensen inneren Oberfläche könnten solche Polymere auch als Katalysatorsubstanzen für chemische Reaktionen nützlich sein. Von JUMP-1, dem magnetischen Polymer aus Jena, so erwarten die Chemiker um Prof. Plass, werde also noch zu hören sein.

Original-Publikation:
Akintola O. et al. A robust anionic pillared-layer framework with triphenylamine-based linkers: ion exchange and counterion-dependent sorption properties, CrystEngComm, 2017,19, 2723-2732 (10.1039/C7CE00369B)

Kontakt:
Prof. Dr. Winfried Plass, Oluseun Akintola
Institut für Anorganische und Analytische Chemie der Friedrich-Schiller-Universität Jena
Humboldtstr. 8, 07743 Jena
Tel.: 03641 / 948130
E-Mail: Sekr.Plass[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie