Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Jedes Atom zählt

05.08.2016

Bösartige Krebszellen wachsen nicht nur schneller als die meisten Körperzellen. Sie sind auch besonders abhängig von dem zellulären Müllverwerter, dem Proteasom, das ausgediente Proteine zerlegt. Bei der Behandlung mancher Krebsarten macht man sich das zunutze: Patienten werden unter anderem mit Inhibitoren behandelt, die das Proteasom blockieren. Der folgende Entsorgungsstau lässt die Krebszelle schließlich absterben. Forscher haben das humane Proteasom nun in zuvor unerreichtem Detail in 3D sichtbar gemacht und den Mechanismus entschlüsselt, mit dem Inhibitoren das Proteasom hemmen. Ihre Erkenntnisse sind wegweisend, um wirksamere Proteasom-Inhibitoren für die Krebstherapie zu entwickeln.

Wie genau zelluläre Maschinen wie das Proteasom funktionieren, lässt sich nur verstehen, wenn man ihren räumlichen Aufbau im Detail kennt. Mit seinen mehr als 50000 Atomen ist der tonnenförmige Müllverwerter für Strukturbiologen allerdings eine echte Herausforderung.


Röntgenstrahlen, die maßgeschneidert auf die Abmessung der Proteinkristalle passen, ermöglichten es den Wissenschaftlern, die Struktur des Proteasoms in bisher unerreichtem Detail aufzuklären.

Hartmut Sebesse / Max-Planck-Institut für biophysikalische Chemie

Wissenschaftlern um Ashwin Chari vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und Gleb Bourenkov vom European Molecular Biology Laboratory (EMBL) ist es nun mittels Röntgenkristallografie gelungen, die dreidimensionale Struktur des menschlichen Proteasoms mit einer Trennschärfe von bis zu 1,8 Ångström aufzuklären – und damit die einzelnen Atome des Müllverwerters sichtbar zu machen.

Im nächsten Schritt bestimmten die Forscher außerdem die Struktur des Proteasoms gebunden von vier verschiedenen Inhibitoren, die bereits klinisch im Einsatz sind oder derzeit in Studien getestet werden. „Dank der stark verbesserten Auflösung im Vergleich zu früheren Proteasom-Strukturen konnten wir erstmals den genauen chemischen Mechanismus ermitteln, mit dem die Inhibitoren das Proteasom blockieren. Dieses Wissen ermöglicht es, das Design der Inhibitoren und damit deren Wirksamkeit zu optimieren. Denn nur maßgeschneiderte Inhibitoren hemmen die Aktivität des Proteasoms perfekt und können es komplett stilllegen“, erklärt Chari, Projektgruppenleiter in der Abteilung Strukturelle Dynamik von Holger Stark am MPI für biophysikalische Chemie.

Ein wichtiges Detail entdeckten die Wissenschaftler im sogenannten aktiven Zentrum des Proteasoms, an dem der zelluläre Müll abgebaut wird und an dem sich auch die Inhibitoren anlagern: Anders als bisher gedacht, entsteht bei der chemischen Reaktion von Inhibitor und Proteasom eine 7-Ring Struktur, die eine zusätzliche sogenannte Methylengruppe enthält – mit weitreichenden Folgen für die Wirksamkeit und den chemischen Mechanismus des Inhibitors, so die Forscher.

„Auch wenn es sich bei der Methylengruppe um nur ein Kohlenstoffatom samt zweier benachbarter Protonen unter mehr als 50000 Atomen im Proteasom handelt, beeinflusst diese ganz wesentlich, wie der Inhibitor chemisch beschaffen sein muss, um das Proteasom optimal zu blockieren“, sagt Thomas Schneider, Gruppenleiter am EMBL. „Das muss man bei der Entwicklung neuer Inhibitoren berücksichtigen und die Suche nach Wirkstoff-Kandidaten entsprechend anpassen“, ergänzt Holger Stark.

Das chemische Verfahren, mit dem sich Inhibitoren entsprechend designen lassen, haben die Forscher bereits zum Patent angemeldet. „Da einer möglichen medizinischen Anwendung immer das Erkennen vorausgeht, sind es solche Details, bei denen jedes Atom zählt, die den Unterschied ausmachen“, wie Bourenkov erklärt.

Großer Aufwand zeigt den kleinen Unterschied

Der Erfolg des Projekts ist das Ergebnis großartiger Teamarbeit, betont Max-Planck-Forscher Chari: „Mehrere Wissenschaftler, alle Experten auf ihrem Gebiet, haben ihr jeweiliges Fachwissen beigetragen und sich perfekt ergänzt.“ So arbeiteten für das Projekt Strukturbiologen, Physiker, Kinetiker und Biochemiker des MPI für biophysikalische Chemie, des EMBL in Hamburg und der Universität Göttingen zusammen und entwickelten verschiedene innovative Verfahren.

Um die Struktur eines Moleküls mithilfe von Röntgenkristallografie zu bestimmen, züchten Wissenschaftler von diesem Molekül Kristalle, die sie dann mit Röntgenlicht bestrahlen. Die Röntgenstrahlen werden am Kristall gebeugt und erzeugen ein charakteristisches Muster, anhand dessen sich schließlich die Struktur des Moleküls bestimmen lässt.

Doch in der Praxis ist dies weit schwieriger als es klingt. Mithilfe der neuen Methoden gelang es Fabian Henneberg und Jil Schrader, Nachwuchswissenschaftler in Starks Abteilung und Erstautoren der jetzt in Science erschienen Arbeit, die Proteasomen äußerst rein herzustellen und daraus hochqualitative Kristalle des Komplexes mit und ohne gebundenem Inhibitor zu züchten.

Neue Wirkstoffe testen

Die besondere Reinheit der Proben und die Qualität der Kristalle waren eine entscheidende Voraussetzung, die räumliche Struktur des Müllverwerters derartig detailliert aufklären zu können. Auch das Verfahren zur Aufreinigung und Kristallisation meldeten die Wissenschaftler bereits zum Patent an. „Die Methode, mit der wir das Proteasom aufreinigen und mit und ohne Inhibitor kristallisieren, ist außerdem einsetzbar, um neue Wirkstoffe auf ihre Eignung als Proteasom-Inhibitoren zu testen – im industriellen Maßstab möglicherweise Hunderte pro Woche“, wirft Chari einen Blick in die Zukunft.

Eine zweite entscheidende Voraussetzung für den Erfolg des Projekts war die Brillianz des Röntgenlichts. Dieses lieferte die EMBL-Forschungsanlage am DESY: „Die DESY-Strahlenquelle generiert Röntgenstrahlen von herausragender Qualität. Mithilfe der Hochleistungs-Röntgenoptiken konnten wir die Röntgenstrahlen für das kristallisierte Proteasom maßschneidern und diese hohe Detailschärfe erreichen“, sagt Bourenkov.

Die in dieser Arbeit verwendeten Hochleistungs-Röntgenoptiken wurden 2015 mit Unterstützung des BMBF im Rahmen des RÅC-Förderprogramms in die P14-Strahlführung eingebaut.

Original-Veröffentlichung
Schrader J, Henneberg F, Mata R, Tittmann K, Schneider TR, Stark H, Bourenkov G, Chari A: The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science, 5. August 2016, doi:10.1126/science.aaf8993

Kontakt
Dr. Ashwin Chari, Abteilung Strukturelle Dynamik,
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1654
E-Mail: ashwin.chari@mpibpc.mpg.de

Dr. Gleb Bourenkov
EMBL Hamburg c/o Deutsches Elektronensynchrotron
Tel.: +49 40 89902-120
E-Mail: gleb@embl-hamburg.de

Dr. Carmen Rotte, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für biophysikalische Chemie, Göttingen
Tel.: +49 551 201-1304
E-Mail: carmen.rotte@mpibpc.mpg.de

Sonia Furtado Neves, Pressestelle
EMBL Heidelberg
Tel.: +49 6221 387 8263
E-Mail: sonia.furtado@embl.de

Weitere Informationen:

http://www.mpibpc.mpg.de/15429097/pr_1628 - Original-Pressemitteilung
http://www.mpibpc.mpg.de/de/stark – Webseite der Abteilung Strukturelle Dynamik, Max-Planck-Institut für biophysikalische Chemie, Göttingen
http://www.embl-hamburg.de/research/unit/schneider – Webseite der Arbeitsgruppe Tools for Structure Determination and Analysis, EMBL Hamburg c/o Deutsches Elektronensynchrotron

Dr. Carmen Rotte | Max-Planck-Institut für biophysikalische Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Forschungsteam entdeckt Mechanismus zur Aktivierung der Reproduktion bei Pflanzen
28.04.2017 | Universität Hamburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie