Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Irrtum aufgeklärt: Antriebsgelenk der Stabheuschrecke entdeckt

16.02.2016

Forschende der Universität Bielefeld analysieren Bewegung des sechsbeinigen Insekts

Die Stabheuschrecke ist in der Biologie ein beliebtes Untersuchungsmodell, um Laufbewegungen bei Insekten zu verstehen. Ihr Vorteil: Körper und Nervensystem sind vergleichsweise einfach aufgebaut. In Lehrbüchern wurde über Jahrzehnte behauptet, dass die Kraft zur Stützung des Körpers und die Kraft zur Fortbewegung unabhängig voneinander von verschiedenen Gelenken geregelt werden.


Chris Dallmann arbeitet mit Stabheuschrecken. Sie sind bis zu acht Zentimeter lang. Anders als Heuschrecken können sie nicht springen, sondern nur gehen und klettern. Sie ähneln kleinen Äs

Foto: CITEC/Universität Bielefeld


Welche Kräfte üben die Beine einer Stabheuschrecke aus, und wie bewegt sich das Tier? Das messen CITEC-Forscher mit seitlichen Trittsteinen (weiß) und reflektierenden Markern.

Foto: CITEC/Universität Bielefeld

„Das ist nicht richtig“, sagt jetzt der Biologe Chris Dallmann. „Tatsächlich ist ein und dasselbe Gelenk für beide Aufgaben zuständig. Das können wir mit unseren neuen Analysen belegen“, sagt der Doktorand des Exzellenzclusters Kognitive Interaktionstechnologie (CITEC) der Universität Bielefeld. Die Forschungsergebnisse stellt Dallmann zusammen mit den Professoren Dr. Volker Dürr und Dr. Josef Schmitz im Fachmagazin „Proceedings of the Royal Society“ vor. Die New York Times präsentiert das Forschungsergebnis seit gestern (15.2.2016) in einem Videobeitrag.

„Wir wollen herausfinden, wie sich Stabheuschrecken fortbewegen und welche Aufgabe die einzelnen Teile der Beine dabei haben“, erklärt Professor Dr. Josef Schmitz. Professor Dr. Volker Dürr und er betreuen die Doktorarbeit von Chris Dallmann.

„Erstaunlicherweise kommt die Kraft zur Vorwärtsbewegung und Körperunterstützung aus dem gleichen Gelenk. Dieses Gelenk dient als Antriebseinheit und erzeugt die größte Kraft im Bein. Die anderen Beingelenke dienen gewissermaßen als Steuereinheiten, welche die Antriebskraft so umlenken, dass sich das Tier sowohl über dem Boden halten als auch vorwärts bewegen kann“, sagt Dallmann. „Ein ähnliches Prinzip gilt beispielsweise beim Insektenflug. Dort stellen große Antriebsmuskeln die Kraft bereit, die dann von kleineren Steuermuskeln in Auftrieb und Vortrieb umgeleitet werden. In der Evolution hat sich offenbar diese prinzipielle Funktionsaufteilung bewährt.“

Noch vor kurzem waren sich Biologen weltweit sicher, dass die Kraft für die Vorwärtsbewegung der Stabheuschrecke aus dem Gelenk kommt, um das sich das Bein rückwärts bewegt. „Der Grund für die falsche Annahme war, dass die Messmethoden zu ungenau waren“, berichtet Josef Schmitz. „Stabheuschrecken wiegen nur etwa ein Gramm. Wegen des geringen Gewichts ließ sich bisher nur sehr schlecht berechnen, welche Kraft die einzelnen Beinglieder ausüben.“

Dallmann arbeitet in der Forschungsgruppe Biologische Kybernetik der Fakultät für Biologie, die von Volker Dürr geleitet wird und am Exzellenzcluster CITEC beteiligt ist. Dallmann wirkt auch an der Weiterentwicklung des Laufroboters Hector mit, für den sich die Forscherinnen und Forscher von den Bewegungen der Stabheuschrecke inspirieren lassen.

Die Forschungsgruppe Biologische Kybernetik hat ein neues Verfahren entwickelt, das mit dem Leichtgewicht der Stabheuschrecke zurechtkommt. Es misst zum einen sehr präzise die Kräfte, die das ganze Bein auf den Boden ausübt. Zum anderen misst es mit hoher zeitlicher Auflösung, wie sich das Bein im Raum bewegt. „Indem ich diese beiden Datenpakete kombiniere, kann ich berechnen, wie viel Kraft jedes einzelne Gelenk freisetzt“, erklärt Dallmann. So kann er zeigen, welches Gelenk die Bewegung antreibt und welche Gelenke die Antriebskraft lediglich umleiten.

Jedes der sechs Beine der Stabheuschrecke wird maßgeblich von drei Gelenken bewegt. Wie ein „L“ sind sie mit dem Körper des Tieres verbunden. Ein Hüftgelenk (Thorax-Coxa-Gelenk) verbindet das Bein mit dem Körper, und um dieses Gelenk bewegt sich das Bein rückwärts. Ein zweites Hüftgelenk (Coxa-Trochanter-Gelenk) verbindet die Hüfte mit dem Oberschenkel, um dieses Gelenk bewegt sich das Bein nach unten. Ein Kniegelenk (Femur-Tibia-Gelenk) verbindet schließlich den Oberschenkel mit dem Unterschenkel, um dieses Gelenk bewegt sich das Bein nach außen.

Um herauszubekommen, wie viel Kraft die einzelnen Beingelenke der Stabheuschrecke erzeugen, ließ Dallmann die Tiere auf einem Steg mit Trittsteinen laufen. Sensoren in den Trittsteinen erfassen den Druck und die Querkräfte, die von den Füßen der Stabheuschrecke ausgehen. Gleichzeitig zeichnete Dallmann den Gang des Insekts mit einem System zur Bewegungserfassung auf. Das Vicon-System registriert mit Infrarotkameras die Bewegung von 17 kleinen Reflektoren (Markern), die an dem Außenskelett der Stabheuschrecke kleben.

„Als wir die Messung der Bewegung und der Bodenreaktionskräfte zusammengebracht haben, wurde klar, dass der Vortrieb gar nicht durch das Hüftgelenk erfolgt, um das sich das Bein nach hinten bewegt“, so Dallmann. „Vielmehr entsteht der Vortrieb automatisch dadurch, dass der Oberschenkel stark nach unten drückt, um den Körper zu stützen.“ Forscher dachten bislang, das Herunterdrücken des Schenkels diene alleine der Körperunterstützung.

Die neuen Erkenntnisse dürften nicht nur Änderungen in den Lehrbüchern mit sich bringen. Das Wissen soll auch mit der künstlichen Stabheuschrecke Hector erprobt werden. „Der Roboter ist ähnlich der Stabheuschrecke mit elastischen Antrieben ausgestattet“, sagt Chris Dallmann. „Wir wollen jetzt testen, welche Vorteile es hat, wenn ein Antrieb wie beim tierischen Vorbild sowohl die Körperhöhe als auch die Fortbewegung regelt.“

Chris Dallmann befasst sich in seiner Doktorarbeit mit der Frage, wie Stabheuschrecken ihr Gehen an die Umgebung anpassen. Er ist seit Ende 2013 Mitglied der CITEC-Graduiertenschule. Die Einrichtung ist 2008 gegründet worden und sorgt für die weiterführende wissenschaftliche Qualifikation in der Kognitiven Interaktionstechnologie an der Universität Bielefeld. Derzeit hat die Graduiertenschule rund 100 Mitglieder.

Originalartikel:
Chris Dallmann, Volker Dürr, Josef Schmitz: Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proceedings of the Royal Society B: Biological Sciences 283 (1823). 20 January 2016.DOI: 10.1098/rspb.2015.1708, erschienen am 20. Januar 2016.

Kontakt:
Chris Dallmann, Universität Bielefeld
Fakultät für Biologie
Telefon: 0521 106-5530
E-Mail: cdallmann@uni-bielefeld.de

Weitere Informationen:

http://www.nytimes.com/2016/02/15/science/stick-insect-helps-scientists-study-ho... Videobeitrag der New York Times
http://youtu.be/1DB6bd61i0o Video zu Hector bei research_tv („Eine Roboter-Stabheuschrecke lernt laufen“)
http://www.uni-bielefeld.de/biologie/Kybernetik Forschungsgruppe „Biologische Kybernetik“

Sandra Sieraad | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik