Intrazelluläres Straßennetz sorgt für Ordnung

Proteine (rot) werden entlang eines zellulären Straßennetzes (Microtubuli, grün) zur Peripherie der Zelle gesendet. Foto: Sara Wickstroem / Copyright: MPI für Biochemie<br>

Ein interdisziplinäres Team aus Wissenschaftlern verschiedener Max-Planck-Institute hat jetzt den Mechanismus identifiziert, wie Hautzellen auf bestimmte Signale von außen ihre innere Architektur anpassen.

„Damit Zellen schnell auf Signale aus der Umgebung reagieren können, brauchen sie eine Art Straßennetz, mit dessen Hilfe sie Nachrichten an die richtigen Stellen in der Zelle transportieren“, erläutert Sara Wickström, Forscherin am Max-Planck-Institut für Biochemie. Bei Fehlern in dieser Maschinerie kann es zu Krankheiten wie Krebs kommen, so die Forscherin.

Alle Gewebe, so auch die Haut, setzen sich aus verschiedenen Zellen zusammen, die miteinander und mit ihrer Umgebung in Kontakt stehen. Damit die Zellen effizient miteinander kommunizieren können, müssen Signale erzeugt und anschließend an die richtigen Stellen innerhalb der Zellen verschickt werden. „Dafür nutzen Zellen ein intrazelluläres Straßennetz: die Mikrotubuli“, erklärt Sara Wickström vom Max-Planck-Institut für Biochemie. Das macht es ihnen möglich, ihre Informationsübermittler (Proteine) effizient und haargenau zu spezialisierten Orten in den Zellen zu transportieren.

Durch Untersuchungen an bestimmten Rezeptoren (Integrine) in der Außenhülle von Hautzellen konnte die Max-Planck-Forscherin zeigen, dass die Anordnung des zellulären Straßennetzes sehr dynamisch ist. Sie ändert sich auf ein Signal hin, das die Integrine aus der Umwelt empfangen. So gesteuert, können die Mikrotubuli die Nachrichten übermittelnden Proteine an die richtigen Orte in der Zelle liefern. „Dies ist besonders wichtig in Geweben wie der Haut, deren oberste Zellen die erste Schicht zur Außenwelt darstellen“, sagt die Forscherin. „Diese Zellen brauchen eine ganz andere Proteinzusammensetzung, um ihre Funktionen zu gewährleisten, als die Hautzellen tieferer Schichten, die dem Inneren des Körpers zugewandt sind und ganz andere Funktionen haben.“

In Kooperation mit Matthias Mann, Leiter der Forschungsabteilung Proteomics und Signaltransduktion, konnte die Max-Planck-Wissenschaftlerin gezielt Proteine identifizieren, die an diesem Prozess beteiligt sind. Mit der Expertise von Joachim Spatz vom MPI für Metallforschung in Stuttgart konnte sie zusätzlich die Rolle der Zellform bei der Regulation der Mikrotubuli untersuchen. „Der Prozess der Signalverarbeitung in der Zelle ist sehr komplex“, sagt Wickström. „Daher ist eine große Bandbreite an Methoden nötig, um ihn zu verstehen.“

Bei Krankheiten wie Krebs befreien sich die Zellen von den normalen Regulationsmechanismen, welche die Steuersignale aus der Umwelt übermitteln. Sie verlieren die Zellhaftung, werden beweglicher und teilen sich unkontrolliert. Schon lange ist bekannt, dass in Tumorzellen die Anzahl der Integrine verändert und die Verteilung verschiedener anderer Proteine an der Zelloberfläche gestört ist. In Zukunft möchte die Nachwuchswissenschaftlerin untersuchen, ob solche strukturellen Veränderungen Krankheiten wie Krebs begünstigen, die während der natürlichen Alterung häufiger auftreten. Diesen und anderen Fragen wird sich Sara Wickström in einer eigenen Forschungsgruppe am MPI für Biologie des Alterns in Köln widmen.

Originalveröffentlichung:
S. A. Wickström, A. Lange, M. W. Hess, J. Polleux, J. P. Spatz, M. Krüger, K. Pfaller, A. Lambacher, W. Bloch, M. Mann, L. A. Huber and R. Fässler: Integrin-linked kinase controls microtubule dynamics required for plasma membrane targeting of caveolae. Developmental Cell, 19. Oktober, 2010
Kontakt:
Dr. Sara Wickström
Homeostase und Alterung der Haut
Max-Planck-Institut für Biologie des Alterns
Gleueler Str. 50 a
50931 Köln
E-Mail: wickstroem@age.mpg.de
Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel. +49 89-8578-2824
E-Mail: konschak@biochem.mpg.de

Media Contact

Anja Konschak Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer