Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Interne Kopplung der Ohren ermöglicht Tieren das Richtungshören: Ein Tunnel im Kopf

18.02.2016

Menschen nutzen den Zeitunterschied, mit dem ein Schallsignal an beiden Ohren ankommt, zur Richtungsbestimmung. Bei Fröschen, Echsen oder Vögeln ist der Ohrabstand hierfür zu gering. Sie besitzen jedoch einen Verbindungsgang zwischen beiden Trommelfellen, in dem sich innere und äußere Schallwellen überlagern. Mit einem universellen mathematischen Modell zeigen Forscher der Technischen Universität München (TUM) nun erstmals, wie in diesem „inneren Ohr“ neue Signale entstehen, die die Tiere zur Ortung nutzen.

Sei es eine Bedrohung, die sich anschleicht oder eine Beute, die es im Dunkeln zu finden gilt – die genaue Position einer Geräuschquelle bestimmen zu können, ist im Tierreich von großer Bedeutung. Fast alle Säugetiere, darunter auch der Mensch, lokalisieren eine Geräuschquelle horizontal mit Hilfe der zeitlichen Verzögerung mit der das Schallsignal an beiden Ohren ankommt. Aus dem Zeitunterschied berechnet das Gehirn die Richtung, aus der das Geräusch kam.


Ein luftgefüllter Kanal verbindet die Ohren der Eidechse im Inneren und ermöglicht ihr das Richtungshören

Bild: Frieder Mugele, Universität Twente

Frösche, viele Reptilien und auch Vögel haben diese Möglichkeit nicht, da ihr Ohrabstand oft nur wenige Zentimeter beträgt. Der Zeitunterschied ist daher so gering, dass das Gehirn ihn nicht mehr verarbeiten kann. Um diesen Nachteil auszugleichen, haben diese Tiere ein einfaches und zugleich sehr effizientes System entwickelt: Ein luftgefüllter Hohlraum verbindet die Trommelfelle beider Ohren.

Dieser quer durch den Schädel hindurch verlaufende Hohlraum sorgt für eine Kopplung der beiden Trommelfelle. Die Wissenschaftler sprechen hierbei von „intern gekoppelten Ohren“ (englisch „internally coupled ears“, ICE). Dieser „Tunnel im Kopf“ wird gut sichtbar, wenn man beispielsweise einem Gecko in eines seiner Ohren hineinleuchtet: Der Lichtstrahl tritt dann aus dem anderen Ohr wieder aus.

Anders als bei uns Menschen nehmen die Tiere damit nicht nur die von außen auftreffenden Signale wahr, sondern auch eine Überlagerung der äußeren Schallwellen mit jenen, die im Inneren des Verbindungsganges durch die Kopplung mit der anderen Seite entstehen. Zwar haben Wissenschaftler durch Experimente herausgefunden, dass die Tiere dieses resultierende Signal zur Richtungsbestimmung nutzen. Was jedoch in den gekoppelten Ohren genau vor sich geht, blieb bislang ein Rätsel.

Ein Modell für 15.000 Arten

Nun ist es Wissenschaftlern um Leo van Hemmen, Professor für Theoretische Biophysik an der Technischen Universität München (TUM), erstmals gelungen, ein universell anwendbares mathematisches Modell zu entwickeln, das genau beschreibt, wie sich die Schallwellen in intern gekoppelten Ohren ausbreiten und welche Hinweise auf die Richtung des Signals dabei entstehen.

„Unser Modell lässt sich auf alle Tiere mit diesem Hörsystem anwenden, auch wenn die Hohlräume zwischen den Trommelfellen bei den unterschiedlichen Spezies sehr verschieden aussehen“, erklärt van Hemmen. „Hierdurch verstehen wir nun, was genau im Inneren der Ohren dieser Tiere vor sich geht, und können Experimente bei ganz unterschiedlichen Tierarten erklären und vorhersagen.“ Insgesamt besitzen mehr als 15.000 Arten intern gekoppelte Ohren – das ist mehr als die Hälfte aller landlebenden Wirbeltiere.

Zusammenspiel von externen und internen Signalen

Mit Hilfe ihres Modells fanden van Hemmen und sein Team heraus, dass die Tiere sogar zwei verschiedene Methoden zum Hören mit intern gekoppelten Ohren entwickelt haben. Sie treten in unterschiedlichen Frequenzbereichen auf und ergänzen sich gegenseitig.

Bei Tönen mit einer Frequenz unterhalb der Grundfrequenz des Trommelfells wird der Zeitunterschied, der durch die Überlagerung der äußeren und der inneren Signale entsteht, bis zu fünffach verstärkt. Das reicht aus, um das Geräusch orten zu können.

Bei höheren Frequenzen kann die Zeitdifferenz nicht mehr genutzt werden. Hier kommt eine andere Eigenschaft des Signals zum Tragen: Der Unterschied in der Amplitude, also des Lautstärkepegels, mit dem das Signal an beiden Ohren wahrgenommen wird. „Diese Amplitudendifferenz entsteht allein durch die Kopplung der beiden Ohren“, erklärt van Hemmen. „Das war ein überraschendes Ergebnis.“

Die neuen Erkenntnisse über den Mechanismus und vor allem die Vorteile des Hörens mit intern gekoppelten Ohren sind auch für die Industrie interessant. So könnten vielleicht einmal Roboter mit solch einem Hörsystem ausgestattet werden. „Ich kann mir eine Anwendung in der Robotik gut vorstellen, da diese Art der Verstärkung keine Energie kostet“, meint van Hemmen. In Zukunft wollen die Wissenschaftler um van Hemmen ihr Modell zusammen mit experimentell arbeitenden Kollegen weiter verfeinern.

Publikation:

A.P. Vedurmudi, J. Goulet, J. Christensen-Dalsgaard, B.A. Young, R. Williams, and J.L. van Hemmen, How Internally Coupled Ears Generate Temporal and Amplitude Cues for Sound Localization, Physical Review Letters, 116, 028101 DOI: 10.1103/PhysRevLett.116.028101

Kontakt:

Prof. Dr. J. L. van Hemmen
Lehrstuhl für Theoretische Biophysik
Physik Department T35
James-Franck-Str. 1, 85748 Garching, Germany
Tel: +49 89 289 12362 – E-Mail: lvh@tum.de

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.028101

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Weiße Gespenster am Straßenrand - die Pfaffenhütchen-Gespinstmotte
18.05.2018 | Bayerische Landesanstalt für Wald und Forstwirtschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics