Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forscherteam untersucht Schalenbildung bei Auster und Meeresschnecke

22.02.2010
Auf unterschiedlichen genetischen Wegen zu Schalen aus Perlmutt

Muscheln und Schnecken bilden Schalen in unterschiedlichen Formen und Farben, manche fallen durch ihr schillerndes Perlmutt besonders auf. Wie diese Weichtiere die robusten und komplizierten Schalenstrukturen herstellen, hat ein internationales Forscherteam unter der Leitung des Göttinger Geobiologen Dr. Daniel J. Jackson am Beispiel der Muschel Pinctada maxima und der Schnecke Haliotis asinina untersucht.


Schale mit Perlmutt: Schnecke Haliotis asinina. Foto: Uni Göttingen


Schale mit Perlmutt: Muschel Pinctada maxima. Foto: Uni Göttingen

Überraschende Ergebnisse der molekularbiologischen Analysen sind: Zum einen haben die beiden Arten desselben Tierstammes offenbar unabhängig voneinander verschiedene genetische Lösungen für die Schalenbildung entwickelt. Zum anderen entdeckten die Wissenschaftler bei der Analyse von Proteinen, die bei der Herstellung der Schalen eine Rolle spielen, bei beiden Arten ungewöhnliche Strukturen, die auch in Zusammenhang mit der Bildung von anderem elastischen Material wie zum Beispiel Spinnenseide bekannt sind. Die Forschungsergebnisse sind in der Online-Ausgabe des Fachjournals "Molecular Biology and Evolution" veröffentlicht worden.

Die zum Tierstamm der Weichtiere gehörenden Schnecken und Muscheln kommen in ganz unterschiedlichen Lebensräumen vor. H. asinina ist eine in warmen Meeren lebende Schnecke, deren perlmuttreiche Schale die Form einer Ohrmuschel hat und die deshalb auch tropisches Seeohr genannt wird. Die Südsee-Muschel P. maxima ist eine sehr große Auster, die weiße Perlen bildet und daher auch als "Silberlippige Perlauster" bezeichnet wird. Während die Tiere heranwachsen, sondern sie Kalziumkarbonat ab und bilden daraus die Schale.

Wissenschaftler nahmen bislang an, dass die verschiedenen Weichtiere für die Schalenbildung auf die gleichen Gene zurückgreifen. Das Forscherteam um Dr. Jackson fand dagegen heraus, dass die beiden untersuchten Arten nur weniger als zehn Prozent ihrer Gene teilen. Daraus folgern die Wissenschaftler, dass das genetische Repertoire, welches die Schalenbildung ermöglicht, bei den beiden Arten grundlegend verschieden ist. Sie vermuten, dass Muscheln und Schnecken im Laufe der Evolution für die Bildung ihrer Schalen unterschiedliche genetische Lösungen unabhängig voneinander entwickelt haben.

Bei der Analyse der unterschiedlichen Proteine in H. asinina und P. maxima stießen die Wissenschaftler auf ungewöhnliche Strukturen: Die Proteine haben sich wiederholende Abschnitte, sogenannte Domänen, die aus häufig aufeinanderfolgenden Aminosäuren bestehen. Jede der Domänen faltet sich zu einer unterschiedlichen räumlichen Struktur. Das Zusammenwirken dieser Domänen ist für die Gesamtfunktion eines Proteins entscheidend. "Die in den beiden Arten unterschiedlichen Proteine enthalten jeweils nur wenige der 20 möglichen Aminosäuren, die mehrfach aneinander gereiht werden und eine Sequenz bilden, die oft wiederholt wird", erläutert Dr. Jackson. Ähnliche Proteine sind in der Natur zum Beispiel in der Seide von Spinnen bekannt, in der eine hohe Elastizität erforderlich ist. Daher könnten sie in der Weichtierschale ebenfalls eine wichtige Rolle bei der Bildung stabiler und robuster Schalen spielen.

Die Ergebnisse der Wissenschaftler können helfen zu verstehen, wie Weichtiere die komplizierten Schalenstrukturen herstellen. Die gesammelten Daten könnten Materialwissenschaftlern auch bei Versuchen dienen, die stabile natürliche Keramik Perlmutt künstlich herzustellen.

Dr. Daniel J. Jackson hat seine Arbeit in einem Forschungsteam an der University of Queensland in Australien begonnen; seit Herbst 2008 setzt er seine Forschung als Juniorprofessor an der Universität Göttingen fort. Am Courant Forschungszentrum "Geobiologie", das aus Mitteln der Exzellenzinitiative gefördert wird, hat er die Nachwuchsgruppe "Evolution der Metazoen" aufgebaut. Dort untersuchen Wissenschaftler nun zusätzlich die Süßwasserschnecke Lymnaea stagnalis und kombinieren ihre Analysen mit Genomdaten der Metazoen aus Internet-Datenbanken.

Originalveröffentlichung:
Daniel J. Jackson et al.: Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, doi:10.1093/molbev/msp278.
Kontaktadresse:
Juniorprofessor Dr. Daniel J. Jackson
Georg-August-Universität Göttingen
Courant Forschungszentrum "Geobiologie"
Nachwuchsgruppe "Evolution der Metazoen"
Goldschmidtstraße 3-5, 37077 Göttingen
Telefon (0551) 39-14177, Fax (0551) 39-7918
E-Mail: djackso@uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.uni-goettingen.de/en/102705.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Spot auf die Maschinerie des Lebens
23.08.2017 | Max-Planck-Institut für die Physik des Lichts, Erlangen

nachricht Immunsystem kann durch gezielte Manipulation des Zellstoffwechsels reguliert werden
23.08.2017 | Medical University of Vienna

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Platz 2 für Helikopter-Designstudie aus Stade - Carbontechnologie-Studenten der PFH erfolgreich

Bereits lange vor dem Studienabschluss haben vier Studenten des PFH Hansecampus Stade ihr ingenieurwissenschaftliches Können eindrucksvoll unter Beweis gestellt: Malte Blask, Hagen Hagens, Nick Neubert und Rouven Weg haben bei einem internationalen Wettbewerb der American Helicopter Society (AHS International) den zweiten Platz belegt. Ihre Aufgabe war es, eine Designstudie für ein helikopterähnliches Fluggerät zu entwickeln, das 24 Stunden an einem Punkt in der Luft fliegen kann.

Die vier Kommilitonen sind im Studiengang Verbundwerkstoffe/Composites am Hansecampus Stade der PFH Private Hochschule Göttingen eingeschrieben. Seit elf...

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft des Leichtbaus: Mehr als nur Material einsparen

23.08.2017 | Veranstaltungen

Logistikmanagement-Konferenz 2017

23.08.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2017

23.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Spot auf die Maschinerie des Lebens

23.08.2017 | Biowissenschaften Chemie

Die Sonne: Motor des Erdklimas

23.08.2017 | Physik Astronomie

Entfesselte Magnetkraft

23.08.2017 | Physik Astronomie