Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forscherteam untersucht Schalenbildung bei Auster und Meeresschnecke

22.02.2010
Auf unterschiedlichen genetischen Wegen zu Schalen aus Perlmutt

Muscheln und Schnecken bilden Schalen in unterschiedlichen Formen und Farben, manche fallen durch ihr schillerndes Perlmutt besonders auf. Wie diese Weichtiere die robusten und komplizierten Schalenstrukturen herstellen, hat ein internationales Forscherteam unter der Leitung des Göttinger Geobiologen Dr. Daniel J. Jackson am Beispiel der Muschel Pinctada maxima und der Schnecke Haliotis asinina untersucht.


Schale mit Perlmutt: Schnecke Haliotis asinina. Foto: Uni Göttingen


Schale mit Perlmutt: Muschel Pinctada maxima. Foto: Uni Göttingen

Überraschende Ergebnisse der molekularbiologischen Analysen sind: Zum einen haben die beiden Arten desselben Tierstammes offenbar unabhängig voneinander verschiedene genetische Lösungen für die Schalenbildung entwickelt. Zum anderen entdeckten die Wissenschaftler bei der Analyse von Proteinen, die bei der Herstellung der Schalen eine Rolle spielen, bei beiden Arten ungewöhnliche Strukturen, die auch in Zusammenhang mit der Bildung von anderem elastischen Material wie zum Beispiel Spinnenseide bekannt sind. Die Forschungsergebnisse sind in der Online-Ausgabe des Fachjournals "Molecular Biology and Evolution" veröffentlicht worden.

Die zum Tierstamm der Weichtiere gehörenden Schnecken und Muscheln kommen in ganz unterschiedlichen Lebensräumen vor. H. asinina ist eine in warmen Meeren lebende Schnecke, deren perlmuttreiche Schale die Form einer Ohrmuschel hat und die deshalb auch tropisches Seeohr genannt wird. Die Südsee-Muschel P. maxima ist eine sehr große Auster, die weiße Perlen bildet und daher auch als "Silberlippige Perlauster" bezeichnet wird. Während die Tiere heranwachsen, sondern sie Kalziumkarbonat ab und bilden daraus die Schale.

Wissenschaftler nahmen bislang an, dass die verschiedenen Weichtiere für die Schalenbildung auf die gleichen Gene zurückgreifen. Das Forscherteam um Dr. Jackson fand dagegen heraus, dass die beiden untersuchten Arten nur weniger als zehn Prozent ihrer Gene teilen. Daraus folgern die Wissenschaftler, dass das genetische Repertoire, welches die Schalenbildung ermöglicht, bei den beiden Arten grundlegend verschieden ist. Sie vermuten, dass Muscheln und Schnecken im Laufe der Evolution für die Bildung ihrer Schalen unterschiedliche genetische Lösungen unabhängig voneinander entwickelt haben.

Bei der Analyse der unterschiedlichen Proteine in H. asinina und P. maxima stießen die Wissenschaftler auf ungewöhnliche Strukturen: Die Proteine haben sich wiederholende Abschnitte, sogenannte Domänen, die aus häufig aufeinanderfolgenden Aminosäuren bestehen. Jede der Domänen faltet sich zu einer unterschiedlichen räumlichen Struktur. Das Zusammenwirken dieser Domänen ist für die Gesamtfunktion eines Proteins entscheidend. "Die in den beiden Arten unterschiedlichen Proteine enthalten jeweils nur wenige der 20 möglichen Aminosäuren, die mehrfach aneinander gereiht werden und eine Sequenz bilden, die oft wiederholt wird", erläutert Dr. Jackson. Ähnliche Proteine sind in der Natur zum Beispiel in der Seide von Spinnen bekannt, in der eine hohe Elastizität erforderlich ist. Daher könnten sie in der Weichtierschale ebenfalls eine wichtige Rolle bei der Bildung stabiler und robuster Schalen spielen.

Die Ergebnisse der Wissenschaftler können helfen zu verstehen, wie Weichtiere die komplizierten Schalenstrukturen herstellen. Die gesammelten Daten könnten Materialwissenschaftlern auch bei Versuchen dienen, die stabile natürliche Keramik Perlmutt künstlich herzustellen.

Dr. Daniel J. Jackson hat seine Arbeit in einem Forschungsteam an der University of Queensland in Australien begonnen; seit Herbst 2008 setzt er seine Forschung als Juniorprofessor an der Universität Göttingen fort. Am Courant Forschungszentrum "Geobiologie", das aus Mitteln der Exzellenzinitiative gefördert wird, hat er die Nachwuchsgruppe "Evolution der Metazoen" aufgebaut. Dort untersuchen Wissenschaftler nun zusätzlich die Süßwasserschnecke Lymnaea stagnalis und kombinieren ihre Analysen mit Genomdaten der Metazoen aus Internet-Datenbanken.

Originalveröffentlichung:
Daniel J. Jackson et al.: Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, doi:10.1093/molbev/msp278.
Kontaktadresse:
Juniorprofessor Dr. Daniel J. Jackson
Georg-August-Universität Göttingen
Courant Forschungszentrum "Geobiologie"
Nachwuchsgruppe "Evolution der Metazoen"
Goldschmidtstraße 3-5, 37077 Göttingen
Telefon (0551) 39-14177, Fax (0551) 39-7918
E-Mail: djackso@uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.uni-goettingen.de/en/102705.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab
17.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Proteinforschung: Der Computer als Mikroskop
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau