Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Internationales Forscherteam untersucht Schalenbildung bei Auster und Meeresschnecke

22.02.2010
Auf unterschiedlichen genetischen Wegen zu Schalen aus Perlmutt

Muscheln und Schnecken bilden Schalen in unterschiedlichen Formen und Farben, manche fallen durch ihr schillerndes Perlmutt besonders auf. Wie diese Weichtiere die robusten und komplizierten Schalenstrukturen herstellen, hat ein internationales Forscherteam unter der Leitung des Göttinger Geobiologen Dr. Daniel J. Jackson am Beispiel der Muschel Pinctada maxima und der Schnecke Haliotis asinina untersucht.


Schale mit Perlmutt: Schnecke Haliotis asinina. Foto: Uni Göttingen


Schale mit Perlmutt: Muschel Pinctada maxima. Foto: Uni Göttingen

Überraschende Ergebnisse der molekularbiologischen Analysen sind: Zum einen haben die beiden Arten desselben Tierstammes offenbar unabhängig voneinander verschiedene genetische Lösungen für die Schalenbildung entwickelt. Zum anderen entdeckten die Wissenschaftler bei der Analyse von Proteinen, die bei der Herstellung der Schalen eine Rolle spielen, bei beiden Arten ungewöhnliche Strukturen, die auch in Zusammenhang mit der Bildung von anderem elastischen Material wie zum Beispiel Spinnenseide bekannt sind. Die Forschungsergebnisse sind in der Online-Ausgabe des Fachjournals "Molecular Biology and Evolution" veröffentlicht worden.

Die zum Tierstamm der Weichtiere gehörenden Schnecken und Muscheln kommen in ganz unterschiedlichen Lebensräumen vor. H. asinina ist eine in warmen Meeren lebende Schnecke, deren perlmuttreiche Schale die Form einer Ohrmuschel hat und die deshalb auch tropisches Seeohr genannt wird. Die Südsee-Muschel P. maxima ist eine sehr große Auster, die weiße Perlen bildet und daher auch als "Silberlippige Perlauster" bezeichnet wird. Während die Tiere heranwachsen, sondern sie Kalziumkarbonat ab und bilden daraus die Schale.

Wissenschaftler nahmen bislang an, dass die verschiedenen Weichtiere für die Schalenbildung auf die gleichen Gene zurückgreifen. Das Forscherteam um Dr. Jackson fand dagegen heraus, dass die beiden untersuchten Arten nur weniger als zehn Prozent ihrer Gene teilen. Daraus folgern die Wissenschaftler, dass das genetische Repertoire, welches die Schalenbildung ermöglicht, bei den beiden Arten grundlegend verschieden ist. Sie vermuten, dass Muscheln und Schnecken im Laufe der Evolution für die Bildung ihrer Schalen unterschiedliche genetische Lösungen unabhängig voneinander entwickelt haben.

Bei der Analyse der unterschiedlichen Proteine in H. asinina und P. maxima stießen die Wissenschaftler auf ungewöhnliche Strukturen: Die Proteine haben sich wiederholende Abschnitte, sogenannte Domänen, die aus häufig aufeinanderfolgenden Aminosäuren bestehen. Jede der Domänen faltet sich zu einer unterschiedlichen räumlichen Struktur. Das Zusammenwirken dieser Domänen ist für die Gesamtfunktion eines Proteins entscheidend. "Die in den beiden Arten unterschiedlichen Proteine enthalten jeweils nur wenige der 20 möglichen Aminosäuren, die mehrfach aneinander gereiht werden und eine Sequenz bilden, die oft wiederholt wird", erläutert Dr. Jackson. Ähnliche Proteine sind in der Natur zum Beispiel in der Seide von Spinnen bekannt, in der eine hohe Elastizität erforderlich ist. Daher könnten sie in der Weichtierschale ebenfalls eine wichtige Rolle bei der Bildung stabiler und robuster Schalen spielen.

Die Ergebnisse der Wissenschaftler können helfen zu verstehen, wie Weichtiere die komplizierten Schalenstrukturen herstellen. Die gesammelten Daten könnten Materialwissenschaftlern auch bei Versuchen dienen, die stabile natürliche Keramik Perlmutt künstlich herzustellen.

Dr. Daniel J. Jackson hat seine Arbeit in einem Forschungsteam an der University of Queensland in Australien begonnen; seit Herbst 2008 setzt er seine Forschung als Juniorprofessor an der Universität Göttingen fort. Am Courant Forschungszentrum "Geobiologie", das aus Mitteln der Exzellenzinitiative gefördert wird, hat er die Nachwuchsgruppe "Evolution der Metazoen" aufgebaut. Dort untersuchen Wissenschaftler nun zusätzlich die Süßwasserschnecke Lymnaea stagnalis und kombinieren ihre Analysen mit Genomdaten der Metazoen aus Internet-Datenbanken.

Originalveröffentlichung:
Daniel J. Jackson et al.: Parallel evolution of nacre building gene sets in molluscs. Molecular Biology and Evolution, doi:10.1093/molbev/msp278.
Kontaktadresse:
Juniorprofessor Dr. Daniel J. Jackson
Georg-August-Universität Göttingen
Courant Forschungszentrum "Geobiologie"
Nachwuchsgruppe "Evolution der Metazoen"
Goldschmidtstraße 3-5, 37077 Göttingen
Telefon (0551) 39-14177, Fax (0551) 39-7918
E-Mail: djackso@uni-goettingen.de

Dr. Bernd Ebeling | idw
Weitere Informationen:
http://www.uni-goettingen.de/en/102705.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive