Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ins Schwarze getroffen: ForscherInnen der Uni Graz nützen Nano-Partikel für hochpräzise Medikamente

12.03.2009
Sie sind winzig, doch ihre Wirkung ist enorm: Nanopartikel - Teilchen, die rund einhundert Mal kleiner sind als menschliche Zellen - sind auf dem besten Weg, für die Medizin der Zukunft unentbehrlich zu werden: Jüngste nano-technologische Erkenntnisse erschließen neue, effizientere Behandlungsmethoden von Krebs oder Lungenhochdruck.

"Nanopartikel können Wirkstoffe punktgenau an kranke Organe bringen", erklärt Univ.-Prof. Dr. Andreas Zimmer vom Institut für Pharmazeutische Wissenschaften der Karl-Fran­zens-Universität Graz. Gemeinsam mit seiner Forschungsgruppe arbeitet er an einer effizienteren "Verpackung" von Arzneistoffen in Form von Nanopartikel.

Nanopartikel entstehen entweder eigenständig durch Verbindungen von zumeist Bio­polymeren oder lassen sich in aufwändigen Prozessanlagen herstellen. Eigens generierte Teilchen wer­den mit speziellen Eigenschaften ausgestattet, über die sie nor­malerweise nicht verfügen. "Auf diese Art können neue therapeu­tische Effekte erzielt werden, wie etwa die Überlistung der Blut-Hirn-Schranke", erzählt Zimmer.

"Jedes Gehirn verfügt über sehr dichte Blutgefäße, die das Eindrin­gen von Schadstoffen weitgehend verhindern, gleichzeitig aber auch Medikamente zur Behandlung von Tumoren abweisen", erklärt der Wissenschafter. "An einem künstlichen Modell der Blut-Hirn-Schranke, das an der Medizi­nischen Universität Graz entwi­ckelt wurde, ist es uns gelungen, diese Schranke mit Hilfe von Na­notechnik für Arzneimittel durch­lässiger zu machen", so der For­scher.

Die entwickelten Methoden sol­len nicht auf die Grundlagenfor­schung beschränkt bleiben. Viel­mehr wird eine aktive Einbindung der Industrie angestrebt. Die Uni Graz beteiligt sich an Kompetenz­zentren, wie dem Grazer Research Center Pharmaceutical Enginee­ring, und Netzwerken, wie dem österreichischen BioNanoNet und dem Human Technology Styria Cluster. Davon profitieren beson­ders lokal ansässige Firmen, mit denen die WissenschafterInnen eng zusammenarbeiten. "Die österreichische 'NANO Initiative', in die unsere Forschungen eingebettet sind, stellt ein wich­tiges Bindeglied zwischen Wis­senschaft, Wirtschaft und Gesell­schaft dar und schafft neue Ar­beitsplätze im Umfeld der Univer­sitäten", bestätigt Zimmer.

Mehr über die nano-technologischen Forschungen an der Uni Graz lesen Sie in der neuen Ausgabe der UNIZEIT, dem Forschungsmagazin der Karl-Franzens-Universität Graz: http://www.uni-graz.at/unizeit

Rückfragen:
Univ.-Prof. Dr. Andreas Zimmer
Institut für Pharmazeutische Wissenschaften der Karl-Franzens-Universität Graz
Tel.:+43/(0)316 380-8881
E-Mail: andreas.zimmer@uni-graz.at

Gudrun Pichler | idw
Weitere Informationen:
http://www.uni-graz.at/unizeit

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie