Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ins Innere von Nano-Medikamenten spähen

28.03.2013
Deutsche Forschungsgemeinschaft und Land Nordrhein-Westfalen fördern Röntgenanlage für Universität Bielefeld

Mit mehr als 600.000 Euro unterstützen die Deutsche Forschungsgemeinschaft (DFG) und das Wissenschaftsministerium Nordrhein-Westfalen die Anschaffung einer neuen Röntgenanlage für die naturwissenschaftlichen Fakultäten der Universität Bielefeld.


Typische Mikrogelteilchen, hier eine Aufnahme aus dem Rastermikroskop, sind 250 Nanometer klein – das sind 0,00025 Millimeter. Künftig werden Messungen mit der neuen Röntgenanlage das Bild ergänzen: Das Gerät liefert mathematische Werte.
Universität Bielefeld

Die Forscherinnen und Forscher analysieren mit dem Gerät künftig Materialien, die tausend Mal kleiner sind als ein typisches Bakterium. Präzise heißt das Gerät Röntgenkleinwinkeldiffraktometer. Mit seiner Hilfe wollen die Wissenschaftler Nano-Materialien entwickelten, um beispielsweise Medikamente treffsicherer zu machen und Giftstoffe zu neutralisieren.

„Röntgentechniken spielen eine große Rolle in der Erforschung von Nano-Materialien – zum Beispiel bei der Entwicklung intelligenter Trägermaterialien für Medikamente“, sagt Professor Dr. Thomas Hellweg von der Fakultät für Chemie. Er war federführend für den DFG-Antrag zuständig, den er erfolgreich zusammen mit Kolleginnen und Kollegen aus den Fakultäten für Physik, Biologie und Chemie gestellt hat. „Wir wollen das Gerät unter anderem für die Untersuchung von intelligenten Mikrogelen einsetzen. Mit ihnen lassen sich Medikamente in den Körper transportieren, um genau dort freigesetzt zu werden, wo sie wirken sollen.“ Mit dem Röntgenmikroskop wollen Hellweg und sein Team künftig untersuchen, wie verschiedene Mikrogele aufgebaut sind. Im nächsten Schritt schleusen sie Medikamente und Nanopartikel in das Mikrogel ein. „Die Nanopartikel können unter anderem magnetisch und temperaturempfindlich sein“, sagt Hellweg. Die Idee: Nimmt ein Patient das Mikrogel ein, kann der Arzt es von außen mit Magneten an die Stelle – zum Beispiel die Leber – lenken, an der das Medikament ausgeschüttet werden soll. Durch magnetische Wechselfelder bringt der Arzt die Nano-Partikel von außen zum Erhitzen. Die Wärme führt dazu, dass das Mikrogel den Wirkstoff freisetzt. „Drug Delivery“ nennt sich diese treffsichere Ausschüttung von Medikamenten.

Darüber hinaus will Hellwegs Arbeitsgruppe „Physikalische und Biophysikalische Chemie“ die neue Röntgenanlage auch für die Erforschung von Mikroemulsionen einsetzen. Mikroemulsionen sind Gemische aus Wasser und Öl, die mit Tensiden (Seifen) stabilisiert sind. „Wir können Mikroemulsionen herstellen, mit denen sich gefährliche chemische Stoffe wie Pflanzenschutzmittel neutralisieren lassen“, sagt Hellweg. Möglich ist das, weil Mikroemulsionen Enzyme aufnehmen und transportieren können. Diese Proteine zersetzen dann den giftigen Stoff.

Neben Mikrogelen und Mikroemulsionen untersuchen Bielefelder Forscherteams mit dem Gerät in Zukunft auch die Bildung von Eiskristallen in Wolken, Enzymen in Lösung sowie Halbleiterstrukturen in Nano-Größe. Die Ausschreibung für die Röntgenanlage ist jetzt angelaufen. Voraussichtlich in fünf Monaten soll sie erstmals für Analysen genutzt werden.

Die neue Röntgenanlage wird in dem Profilschwerpunkt Molekular- und Nanowissenschaften der Universität Bielefeld eingesetzt. In diesem breiten Feld hat sich die Universität mit einem fokussierten Profil an den Schnittstellen zwischen Physik, Chemie, Biologie und Bioinformatik national und international deutlich sichtbar positioniert. Die aktuellen Forschungsschwerpunkte reichen von Nanoschichten und Einzelmolekülprozessen bis hin zu bakteriellen, pflanzlichen und tierischen Zellen.

Kontakt:
Prof. Dr. Thomas Hellweg, Universität Bielefeld
Fakultät für Chemie / Physikalische Chemie III
Telefon: 0521 106-2055
E-Mail: thomas.hellweg@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/pc3-hellweg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Welcher Scotch ist es?
25.07.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

Gipfeltreffen der String-Mathematik: Internationale Konferenz StringMath 2017

24.07.2017 | Veranstaltungen

Von atmosphärischen Teilchen bis hin zu Polymeren aus nachwachsenden Rohstoffen

24.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

IT-Experten entdecken Chancen für den Channel-Markt

25.07.2017 | Unternehmensmeldung

Erst hot dann Schrott! – Elektronik-Überhitzung effektiv vorbeugen

25.07.2017 | Seminare Workshops

Dichtes Gefäßnetz reguliert Bildung von Thrombozyten im Knochenmark

25.07.2017 | Biowissenschaften Chemie