Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ins Innere von Nano-Medikamenten spähen

28.03.2013
Deutsche Forschungsgemeinschaft und Land Nordrhein-Westfalen fördern Röntgenanlage für Universität Bielefeld

Mit mehr als 600.000 Euro unterstützen die Deutsche Forschungsgemeinschaft (DFG) und das Wissenschaftsministerium Nordrhein-Westfalen die Anschaffung einer neuen Röntgenanlage für die naturwissenschaftlichen Fakultäten der Universität Bielefeld.


Typische Mikrogelteilchen, hier eine Aufnahme aus dem Rastermikroskop, sind 250 Nanometer klein – das sind 0,00025 Millimeter. Künftig werden Messungen mit der neuen Röntgenanlage das Bild ergänzen: Das Gerät liefert mathematische Werte.
Universität Bielefeld

Die Forscherinnen und Forscher analysieren mit dem Gerät künftig Materialien, die tausend Mal kleiner sind als ein typisches Bakterium. Präzise heißt das Gerät Röntgenkleinwinkeldiffraktometer. Mit seiner Hilfe wollen die Wissenschaftler Nano-Materialien entwickelten, um beispielsweise Medikamente treffsicherer zu machen und Giftstoffe zu neutralisieren.

„Röntgentechniken spielen eine große Rolle in der Erforschung von Nano-Materialien – zum Beispiel bei der Entwicklung intelligenter Trägermaterialien für Medikamente“, sagt Professor Dr. Thomas Hellweg von der Fakultät für Chemie. Er war federführend für den DFG-Antrag zuständig, den er erfolgreich zusammen mit Kolleginnen und Kollegen aus den Fakultäten für Physik, Biologie und Chemie gestellt hat. „Wir wollen das Gerät unter anderem für die Untersuchung von intelligenten Mikrogelen einsetzen. Mit ihnen lassen sich Medikamente in den Körper transportieren, um genau dort freigesetzt zu werden, wo sie wirken sollen.“ Mit dem Röntgenmikroskop wollen Hellweg und sein Team künftig untersuchen, wie verschiedene Mikrogele aufgebaut sind. Im nächsten Schritt schleusen sie Medikamente und Nanopartikel in das Mikrogel ein. „Die Nanopartikel können unter anderem magnetisch und temperaturempfindlich sein“, sagt Hellweg. Die Idee: Nimmt ein Patient das Mikrogel ein, kann der Arzt es von außen mit Magneten an die Stelle – zum Beispiel die Leber – lenken, an der das Medikament ausgeschüttet werden soll. Durch magnetische Wechselfelder bringt der Arzt die Nano-Partikel von außen zum Erhitzen. Die Wärme führt dazu, dass das Mikrogel den Wirkstoff freisetzt. „Drug Delivery“ nennt sich diese treffsichere Ausschüttung von Medikamenten.

Darüber hinaus will Hellwegs Arbeitsgruppe „Physikalische und Biophysikalische Chemie“ die neue Röntgenanlage auch für die Erforschung von Mikroemulsionen einsetzen. Mikroemulsionen sind Gemische aus Wasser und Öl, die mit Tensiden (Seifen) stabilisiert sind. „Wir können Mikroemulsionen herstellen, mit denen sich gefährliche chemische Stoffe wie Pflanzenschutzmittel neutralisieren lassen“, sagt Hellweg. Möglich ist das, weil Mikroemulsionen Enzyme aufnehmen und transportieren können. Diese Proteine zersetzen dann den giftigen Stoff.

Neben Mikrogelen und Mikroemulsionen untersuchen Bielefelder Forscherteams mit dem Gerät in Zukunft auch die Bildung von Eiskristallen in Wolken, Enzymen in Lösung sowie Halbleiterstrukturen in Nano-Größe. Die Ausschreibung für die Röntgenanlage ist jetzt angelaufen. Voraussichtlich in fünf Monaten soll sie erstmals für Analysen genutzt werden.

Die neue Röntgenanlage wird in dem Profilschwerpunkt Molekular- und Nanowissenschaften der Universität Bielefeld eingesetzt. In diesem breiten Feld hat sich die Universität mit einem fokussierten Profil an den Schnittstellen zwischen Physik, Chemie, Biologie und Bioinformatik national und international deutlich sichtbar positioniert. Die aktuellen Forschungsschwerpunkte reichen von Nanoschichten und Einzelmolekülprozessen bis hin zu bakteriellen, pflanzlichen und tierischen Zellen.

Kontakt:
Prof. Dr. Thomas Hellweg, Universität Bielefeld
Fakultät für Chemie / Physikalische Chemie III
Telefon: 0521 106-2055
E-Mail: thomas.hellweg@uni-bielefeld.de

Ingo Lohuis | idw
Weitere Informationen:
http://www.uni-bielefeld.de
http://www.uni-bielefeld.de/chemie/arbeitsbereiche/pc3-hellweg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Polymere aus Bor produzieren
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie
18.01.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: Erstmalige präzise Messung der effektiven Ladung eines einzelnen Moleküls

Zum ersten Mal ist es Forschenden gelungen, die effektive elektrische Ladung eines einzelnen Moleküls in Lösung präzise zu messen. Dieser fundamentale Fortschritt einer vom SNF unterstützten Professorin könnte den Weg für die Entwicklung neuartiger medizinischer Diagnosegeräte ebnen.

Die elektrische Ladung ist eine der Kerneigenschaften, mit denen Moleküle miteinander in Wechselwirkung treten. Das Leben selber wäre ohne diese Eigenschaft...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - März 2018

17.01.2018 | Veranstaltungen

2. Hannoverscher Datenschutztag: Neuer Datenschutz im Mai – Viele Unternehmen nicht vorbereitet!

16.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Polymere aus Bor produzieren

18.01.2018 | Biowissenschaften Chemie

Humane Sachbearbeitung mit Künstlicher Intelligenz

18.01.2018 | Informationstechnologie

Modularer Genverstärker fördert Leukämien und steuert Wirksamkeit von Chemotherapie

18.01.2018 | Biowissenschaften Chemie