Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innsbrucker Physiker bestätigen Modell zum Bruch von Doppelsträngen der Erbsubstanz

07.07.2015

Doppelstrangbrüche der DNA bewirken schwere Schäden in der Erbinformation: Sie können dazu führen, dass Tumorgewebe entsteht. Forscher der Universität Innsbruck bestätigten nun in Experimenten erstmals ein Modell, das erklärt, wie es zu solchen Veränderungen kommt. Die Physiker berichten darüber in der aktuellen Ausgabe der Fachzeitschrift Angewandte Chemie International Edition.

Eine erhöhte Strahlenbelastung kann bei einem Menschen einen Krebstumor wahrscheinlicher machen – andererseits wird gezielte Bestrahlung in der Medizin auch zur Behandlung von Tumoren verwendet. Dabei werden Körperzellen nicht direkt durch die energetische Strahlung geschädigt, sondern durch dabei freigesetzte Radikale, also Atome oder Moleküle mit mindestens einem ungepaarten Elektron.


Das Zusammenspiel von OH-Radikal und Elektron verursacht einen signifikanten Schaden an der DNA.

Grafik: Michael Neustetter

Ein solches Radikal ist zum Beispiel das Hydroxyl (OH•), das aus je einem Atom Wasserstoff (H) und Sauerstoff (O) besteht. Wie für Radikale typisch, ist das Hydroxyl besonders reaktionsfreudig und kann chemische Veränderungen im Zellmaterial auslösen. Doppelstrangbrüche der DNA zählen dabei zu den problematischsten Schäden, da sie Geninformationen bei mangelnder Reparatur nachhaltig ändern.

Wasser in der Zelle entscheidend

Erst im Jahr 2000 wurde gezeigt, dass auch niederenergetische Elektronen, die in großer Menge auch durch energetische Strahlung in Zellen freigesetzt werden, über Anlagerung an den Molekülen der DNA eine oder beide ihrer Stränge brechen können. Seitdem suchen Forscher nach den möglichen molekularen Vorgängen, die das verursachen.

Bei Einzelstrangbrüchen ist der Ablauf mittlerweile mehr oder weniger geklärt. So ist es möglich, dass ein Elektron sich im Bereich des DNA-Rückgrats anlagert und dabei die chemische Bindung eines einzelnen Strangs so sehr schwächt, bis er bricht. Wie aber Elektronenanlagerung auch einen Doppelstrang brechen könnte, ist bislang ungeklärt.

Es wird vermutet, dass dabei das Wasser entscheidend ist, das sich in der Zelle befindet: Ein Elektron lagert sich an den Wasser-DNA-Komplex an und regt den Komplex elektronisch an, bevor es wieder freigesetzt wird. Der neutrale Komplex ist durch die Anregung instabil und zerfällt. Dabei wird ein OH-Radikal ausgesendet. Das nun freigewordene Elektron und das OH-Radikal können damit einen Doppelstrangbruch verursachen.

Die Arbeitsgruppe um Stephan Denifl am Institut für Ionenphysik und Angewandte Physik erzeugte nun im Labor sehr kleine Anhäufungen (sogenannte Cluster) von bis zu 25 Stück einer für die DNA typischen Sorte Biomoleküle und untersuchte, wie sich Elektronen daran anlagern. Damit lassen sich einzelne Reaktionsschritte gezielter aufzeigen, als es bei Experimenten mit Riesenmolekülen wie der DNA möglich wäre. Über ihre Beobachtungen berichten die Forscher in der aktuellen Ausgabe der Fachzeitschrift Angewandte Chemie International Edition.

„Dabei wählten wir das Pyrimidin-Molekül, da es einen Grundbestandteil der DNA darstellt. Wir konnten aus wenigen einzelnen Molekülen kleine Cluster erzeugen und haben diese mit niederenergetischen Elektronen beschossen“, erklärt Michael Neustetter, der Erstautor dieser Studie. Dabei zeigte sich bei reinen Pyrimidin-Clustern, dass die im Cluster gebildeten Ionen trotz des zusätzlichen Elektrons stabil sind und deshalb auch mittels Massenspektrometrie messbar sind, da sich die zugeführte Energie im Pyrimidin-Cluster verteilt.

Dies wurde selbst dann beobachtet, wenn das eingefangene Elektron genügend Energie hatte, um den Komplex auch elektronisch anzuregen. Letzteres Ergebnis ändert sich aber drastisch, wenn Pyrimidin im Cluster von Wassermolekülen umgeben ist: Es werden nun keine negativen Ionen mehr beobachtet, was bedeutet, dass das Elektron sich nur kurzeitig anlagert und den angeregten Komplex wieder verlässt.

„Diese Resultate entsprechen genau den ersten bisher experimentell fehlenden Reaktionsschritten im vermuteten Modell von elektronen-induzierten DNA-Doppelstrangbrüchen“, erklärt Stephan Denifl. Die theoretisch vermutete Reaktion auf dem Weg zur DNA-Schädigung konnte damit nun auch experimentell gezeigt werden.

Die Erforschung von elektronen-induzierten Reaktionen in Biomolekülen ist ein zentrales Forschungsthema der Arbeitsgruppe um Stephan Denifl am Institut für Ionenphysik und Angewandte Physik. Die Arbeiten werden unter anderem durch den österreichischen Wissenschaftsfond FWF und die deutsche Forschungsgemeinschaft DFG gefördert.

Rückfragehinweis:

assoz. Prof. Dr. Stephan Denifl
Institut für Ionenphysik und Angewandte Physik
Universität Innsbruck
Tel.: +43 512 507-52662
E-Mail: stephan.denifl@uibk.ac.at

Mag. Stefan Hohenwarter
Büro für Öffentlichkeitsarbeit
Universität Innsbruck
Tel.: +43 512 507-32023
Mobil: +43 676 8725 32023
E-Mail: stefan.hohenwarter@uibk.ac.at

Weitere Informationen:

http://www.dx.doi.org/10.1002/anie.201503733 The effect of solvation in electron attachment to pure and hydrated pyrimidine clusters. Michael Neustetter, Julia Aysina, Filipe Ferreira da Silva and Stephan Denifl, Angewandte Chemie International Edition, Juni 2015. DOI: 10.1002/anie.201503733

Mag. Stefan Hohenwarter | Universität Innsbruck
Weitere Informationen:
http://www.uibk.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie