Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innenleben eines Giganten - Max-Planck-Forscher erlangen neue Einblicke in Proteinabbau-Maschinerie

04.04.2012
Werden Proteine in der Zelle nicht fehlerfrei und kontrolliert abgebaut, können Krankheiten wie Krebs oder Alzheimer entstehen.

Wissenschaftler am Max-Planck-Institut für Biochemie (MPIB) in Martinsried bei München haben jetzt den Aufbau und die Funktionsweise einer wichtigen Komponente der zellulären Abbau-Maschinerie des Menschen entschlüsselt: die Tripeptidyl-Peptidase II (TPPII).


3D-Modell des aktiven, menschlichen TPPII-Komplexes. Grafik: Beate Rockel / Copyright: MPI für Biochemie

„Die Aufklärung der Struktur von TPPII ist ein wichtiger Meilenstein, um die komplexe Aktivierung und Kontrolle des Proteinabbaus zu verstehen“, so Beate Rockel, Forscherin am MPIB. Die Ergebnisse wurden jetzt im Journal Structure veröffentlicht.

Proteine, die molekularen Bauelemente und Maschinen der Zelle, bestehen aus langen Aminosäureketten. Soll eine solche Kette abgebaut werden, so wird das Protein zuerst entfaltet und in kürzere Stücke, so genannte Peptide, zerschnitten. Die weitere Zerkleinerung übernimmt unter anderem die Tripeptidyl-Peptidase II (TPPII), die Forscher um Wolfgang Baumeister, Direktor am MPIB, näher analysiert haben. Sie zerlegt die Peptide in noch kleinere Teile, die nach weiteren Schritten für die Bildung neuer Proteine recycelt werden können.
TPPII ist ein großer Proteinkomplex aus 32 bis 40 gleichen Untereinheiten, die für sich alleine nicht aktiv sind. Lagern sich die Einzelteile zu zwei umeinander gewundenen Strängen zusammen, so wird der Komplex funktionsfähig. Er ist etwa 100-mal größer als die meisten anderen Proteine, die am Abbau beteiligt sind. „TPPII ist ein echter Gigant unter den zellulären Proteinen“, sagt die Doktorandin Anne-Marie Schönegge. “Die Struktur eines solchen Riesen zu entschlüsseln, ist äußerst schwierig.“

Stück für Stück zur Gesamtstruktur
Die MPIB-Wissenschaftler haben jetzt unterschiedliche strukturbiologische Methoden und Modelle kombiniert, um den Aufbau und die Funktionsweise der TPPII im Detail aufzuklären. In Zusammenarbeit mit Kollegen des Lawrence Berkeley National Laboratory in Berkeley war es den Forschern gelungen, die atomare Struktur der TPPII-Untereinheiten aus der Fruchtfliege mittels Röntgenkristallografie zu ermitteln. Diese diente als Vorlage, um als nächstes ein Modell der Untereinheiten der menschlichen TPPII zu berechnen.

Mit Hilfe von Kryo-Elektronenmikroskopie und Einzelpartikelanalyse bestimmten die Wissenschaftler die Struktur der vollständigen und aktiven TPPII-Komplexe aus der Fruchtfliege und dem Menschen – allerdings nur bei mittlerer Auflösung. Indem die Mitarbeiter der Forschungsabteilung „Molekulare Strukturbiologie“ die Strukturen der Gesamtkomplexe mit den genaueren atomaren Modellen der Untereinheiten kombinierten, konnten sie jetzt den detaillierten Aufbau der menschlichen TPPII entschlüsseln: Die einzelnen Untereinheiten bilden ein System aus Hohlräumen, das den Komplex vollständig durchzieht und die aktiven Zentren einschließt.

Durch Einpassen der Strukturen der inaktiven Untereinheiten in die des aktiven Gesamtkomplexes am Computer fanden die Forscher zudem heraus, welche Bereiche des Proteins sich während seiner Aktivierung verändern. Zu diesen Regionen gehören das aktive Zentrum und die Eingänge zu den Hohlräumen im Inneren von TPPII. „Erkenntnisse zur Struktur dieses Komplexes könnten in Zukunft auch zur Entwicklung neuer Medikamenten beitragen, denn es gibt Hinweise darauf, dass TPPII an Krankheiten wie Muskelschwund, Fettleibigkeit und Krebs beteiligt ist“, hofft Beate Rockel. [VS]

Originalpublikationen
Schönegge, A., Villa, E., Hegerl, R., Peters, J., Förster, F., Baumeister, W. and Rockel, B.: The structure of human tripeptidyl peptidase II as determined by a hybrid approach. Structure 20(4): 593–603, April 4, 2012
DOI: 10.1016/j.str.2012.01.025

Chuang, C. K., Rockel, B., Seyit, G., Walian, P. J., Schönegge, A., Peters, J., Zwart, P. H., Baumeister, W. and Jap, B. K.: Hybrid molecular structure of the giant protease tripeptidyl peptidase II." Nat Struct Mol Biol 17(8): 990-996, August 1, 2010
DOI: 10.1038/nsmb.1870

Kontakt
Prof. Dr. Wolfgang Baumeister
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: baumeist@biochem.mpg.de
http://www.biochem.mpg.de/baumeister

Dr. Beate Rockel
Molekulare Strukturbiologie
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
E-Mail: rockel@biochem.mpg.de

Anja Konschak
Öffentlichkeitsarbeit
Max-Planck-Institut für Biochemie
Am Klopferspitz 18
82152 Martinsried
Tel.: +49 (0) 89 8578-2824
E-Mail: konschak@biochem.mpg.de
http://www.biochem.mpg.de

Anja Konschak | Max-Planck-Institut
Weitere Informationen:
http://www.biochem.mpg.de/news/pressroom/index.html
http://www.biochem.mpg.de/baumeister/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks
17.02.2017 | Max-Planck-Institut für molekulare Biomedizin, Münster

nachricht Der Entropie auf der Spur
17.02.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Im Focus: Sensoren mit Adlerblick

Stuttgarter Forscher stellen extrem leistungsfähiges Linsensystem her

Adleraugen sind extrem scharf und sehen sowohl nach vorne, als auch zur Seite gut – Eigenschaften, die man auch beim autonomen Fahren gerne hätte. Physiker der...

Im Focus: Weltweit genaueste und stabilste transportable optische Uhr

Optische Strontiumuhr der PTB in einem PKW-Anhänger – für geodätische Untersuchungen, weltweite Uhrenvergleiche und schließlich auch eine neue SI-Sekunde

Optische Uhren sind noch genauer als die Cäsium-Atomuhren, die gegenwärtig die Zeit „machen“. Außerdem benötigen sie nur ein Hundertstel der Messdauer, um eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

ANIM in Wien mit 1.330 Teilnehmern gestartet

17.02.2017 | Veranstaltungen

Ökologischer Landbau: Experten diskutieren Beitrag zum Grundwasserschutz

17.02.2017 | Veranstaltungen

Von DigiCash bis Bitcoin

16.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stammzellen verlassen Blutgefäße in strömungsarmen Zonen des Knochenmarks

17.02.2017 | Biowissenschaften Chemie

LODENFREY setzt auf das Workforce Mangement von GFOS

17.02.2017 | Unternehmensmeldung

50 Jahre JULABO : Erfahrung – Können & Weiterentwicklung!

17.02.2017 | Unternehmensmeldung