Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Infektionen - Struktur bakterieller Giftspritze aufgeklärt

20.06.2014

Für die Infizierung von Zellen besitzen Bakterien spezielle Sekretionssysteme. LMU-Forscher haben nun die Struktur eines wichtigen Bauteils dieser Exportmaschinen aufgeklärt – möglicherweise ein vielversprechender Ansatzpunkt für neue Antibiotika.

Bakterien kommunizieren mit ihrer Umwelt, indem sie eine breite Palette unterschiedlicher Proteine ausscheiden. Wie eines der dafür notwendigen Transportsysteme – das Typ VI Sekretionssystem – aufgebaut ist, hat nun die Biochemikerin Petra Wendler vom Genzentrum der LMU in Zusammenarbeit mit Axel Mogk am ZMBH (Zentrum für molekulare Biologie Heidelberg) untersucht.

„Bakterien nutzen dieses Sekretionssystem vor allem zur Bekämpfung von konkurrierenden Spezies und zum Angriff auf Wirtszellen, indem sie verschiedene Effektorproteine oder Gifte wie mit einer Nanospritze aus der Zelle herausschießen“, sagt Wendler.

Typ VI Sekretionssysteme wurden erst vor wenigen Jahren entdeckt. Sie kommen in zahlreichen Bakterienarten vor, darunter sind auch viele wichtige Krankheitserreger wie der Cholerabazillus Vibrio cholerae, oder Pseudomonas aeruginosa, der Erreger der Lungenentzündung. Da immer mehr Bakterienspezies gegenüber Antibiotika resistent sind, ist die Erforschung alternativer Angriffspunkte für ihre Bekämpfung dringend erforderlich. Bakterielle Sekretionssysteme sind dabei ein viel versprechender Angriffspunkt, da entsprechende Wirkstoffe pathogene Bakterien sehr gezielt entwaffnen könnten.

Kontrahierbarer Komplex schießt aus der Zelle

„Um geeignete Angriffspunkte im bakteriellen Sekretionssystem zu identifizieren, brauchen wir aber mehr Einblick in diese zellulären Exportmaschinen“, sagt Wendler. „Vor kurzem wurde ein röhrenförmiger Proteinkomplex entdeckt, der kontrahieren und dabei Gifte aus der Zelle herausschießen kann. Neben seiner Eignung als potenziellen Angriffspunkt für neue Antibiotika interessierte uns vor allem die Aufklärung des völlig energieunabhängigen Kontraktionsmechanismus des Komplexes“. Zur Beantwortung beider Fragestellungen sind detaillierte Kenntnisse der Struktur des Komplexes notwendig – dazu konnte Wendler mit ihrem Team nun beitragen.

„Wir konnten die kontrahierte Form des Komplex bis auf Subnanometer genaue Auflösung aufklären und zeigen, dass die Architektur und die inneren strukturgebenden Teile des Komplexes mit bestimmten Viren-Proteinen verwandt sind, aber evolutionär an ihre Funktion als Sekretionssystem angepasst wurden“, erklärt Wendler.

So ist die Erkennungsstelle für ein Abbruchprotein, das den Komplex nach Sekretion der pathogenen Effektoren recycelt, in der von Wendler aufgeklärten kontrahierten Form des Komplexes sehr gut zugänglich. In einem Modell der nicht-kontrahierten Form dagegen ist die Erkennungsstelle für das Abbruchprotein in der Röhrenwand versteckt – so werden nur Komplexe recycelt, die ihre "Giftpfeile" bereits verschossen haben.

Als nächsten Schritt will Wendler die Auflösung der Strukturanalysen weiter verbessern und auch die Struktur des nicht-kontrahierten Sekretionsapparats detailliert aufklären, um Einblick in den Kontraktionsmechanismus zu bekommen. „Die umfassende Aufklärung der Bestandteile und der Funktionsweise des Sekretionssystems könnte dann neue Chancen für die Entwicklung neuer wirksamer Antibiotika eröffnen“, sagt Wendler.
(Cell Reports 2014) göd

Publikation:
Structure of the VipA/B type VI secretion complex suggests a contraction-state specific recycling system
S. Kube, N. Kapitain, T. Zimniak, F. Herzog, A. Mogk, P. Wendler
Cell Reports 2014
Doi: http://dx.doi.org/10.1016/j.celrep.2014.05.034
http://www.cell.com/cell-reports/abstract/S2211-1247(14)00428-8

Kontakt:
Dr. Petra Wendler
Genzentrum der LMU
Tel. +49 (0)89 2180 76928
Fax +49 (0)89 2180 76931
wendler@genzentrum.lmu.de
http://www.wendler.genzentrum.lmu.de/petra-wendler/

Luise Dirscherl | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pflanzlicher Wirkstoff lässt Wimpern wachsen
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Wolkenbildung: Wie Feldspat als Gefrierkeim wirkt
09.12.2016 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie