Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie infektiöse Spumaviren aus Wirtszellen entstehen

16.05.2011
Neue Erkenntnisse über das Zusammenwirken von Erbgut und Enzymen in Spumaviren haben Prof. Dr. Birgitta Wöhrl und Dr. Maximilian Hartl, Lehrstuhl für Biopolymere an der Universität Bayreuth (Leitung: Prof. Dr. Paul Rösch), gemeinsam mit Biomedizinern der Universität Würzburg erzielt. In der jüngsten Ausgabe des "Journal of Virology" stellen sie ihre Forschungsarbeiten vor.

Spumaviren: nicht-pathogen und für die Gentherapie interessant

Weltweit arbeitet die biomedizinische Forschung an Verfahren, die geeignet sind, fehlende Gene zu ergänzen, defekte Gene zu ersetzen oder zumindest die Folgen derartiger Schäden zu kompensieren. Dabei wächst das Interesse an den Spumaviren, die auch als Foamyviren bezeichnet werden und deshalb so heißen, weil sie in Zellkulturen ein schaumiges Aussehen entwickeln. Bisher ist kein Krankheitsbild bekannt, das seine Ursache in einer Infektion mit diesen Viren hätte. Daher verfolgt man mit zunehmender Intensität Forschungsansätze, die Spumaviren nutzen wollen, um Gene zu therapeutischen Zwecken in menschliche Zellen einzuschleusen. Dass Spumaviren nicht-pathogen sind, ist umso überraschender, als es sich bei ihnen um Retroviren handelt. Zu dieser Virenklasse gehören andererseits auch einige hochgradig krankheitserregende Viren.

Proteine in der Wirtszelle: verkettet und inaktiv

Wie alle Viren können sich auch Spumaviren nur dadurch vermehren, dass sie in Zellen eines lebenden Organismus – die sogenannten Wirtszellen – eindringen. Sobald die Infektion gelungen ist, wird das im Viruskern enthaltene Erbgut freigesetzt und in das Erbgut der infizierten Zelle eingeschleust. In der Folge vermehrt die Zelle das virale Erbgut. Gleichzeitig werden alle Proteine hergestellt, die für den Zusammenbau eines neuen Virus notwendig sind.

Diese Proteine sind bei ihrer Entstehung miteinander verkettet. In der Regel sind es zwei oder drei Proteine, die wie die Glieder einer Kette verbunden sind. In dieser Form aber können sie keine biochemischen Funktionen erfüllen. Deshalb müssen die kleinen Proteinketten – die Forschung bezeichnet sie als virale Vorläuferproteine – aufgetrennt werden. Dafür wird ein Enzym, eine sogenannte Protease, benötigt. In einem inaktiven Zustand wartet sie darauf, bei der Spaltung der Proteinketten zum Einsatz zu kommen.

Die virale RNA: Operationsbasis für spaltende Enzyme

An diesem Punkt setzen die Forschungen von Prof. Dr. Birgitta Wöhrl und Dr. Maximilian Hartl an. Ihnen ist es gemeinsam mit Biomedizinern der Universität Würzburg gelungen, einen bisher unbekannten biochemischen Prozess zu entdecken und im Detail wissenschaftlich zu beschreiben. Mit dem Ziel, die kleinen Proteinketten aufzutrennen, schließen sich jeweils zwei Moleküle der Protease paarweise zusammen. Erst in dieser Kombination werden sie aktiv und wirken wie die Klingen einer Schere: Die Protease zerschneidet die Vorläuferproteine in separate Abschnitte, die nun ein neues infektiöses Virus bilden können.

Dieser Vorgang hat, wie das Bayreuther Forschungsteam ebenfalls nachweisen konnte, eine wesentliche Voraussetzung: Damit zwei Proteasemoleküle sich zu einer derartigen Schere zusammenschließen können, müssen sie in direkter Nachbarschaft auf dem RNA-Strang Platz nehmen, der das Erbgut des neu entstehenden Virus bildet. Andernfalls hätte die scherenartige Verbindung der beiden Moleküle nicht die erforderliche Stabilität, oder sie würde gar nicht erst zustande kommen. Die virale RNA ist daher eine unverzichtbare Operationsbasis für die aktive Protease. Nur so kann der enzymgesteuerte Prozess, der die viralen Vorläuferproteine aufspaltet, geordnet und vollständig bis zum Ende ablaufen. Bei allen anderen Retroviren verhält es sich anders. Bei ihnen ist die RNA an diesem Prozess in keiner signifikanten Weise beteiligt.

Die Integrase: unverzichtbar für den Einbau des Erbguts in eine DNA

Die auf der RNA platzierten Protease-Moleküle sind an ihren Enden mittelbar mit den Molekülen eines anderen Enzyms verbunden, der sog. Integrase. Dieses Enzym wird später eine entscheidende Funktion übernehmen, wenn nämlich das neu entstandene infektiöse Virus seinerseits in eine Wirtszelle eindringen wird. Denn das Erbgut des Virus kann nur mit Hilfe der Integrase in die DNA einer Wirtszelle eingebaut werden. Um diese Aufgabe erfüllen zu können, müssen die Moleküle der Integrase so angeordnet sein, dass sie sich in räumlicher Nachbarschaft aneinander lagern.

Damit ein solcher Verbund entstehen kann, ist die auf der RNA platzierte Protease ebenfalls unentbehrlich. Denn die Protease-Moleküle erfüllen auch hier ihre Scherenfunktion: Wechselseitig spalten sie die Integrase-Moleküle ab. Erst dieser Vorgang bewirkt, dass sich die „befreiten“ Integrase-Moleküle im neu entstehenden Virus richtig aneinander lagern können. Die Bayreuther Forscher vermuten, dass auch diese räumliche Anordnung der Integrase nur zustande kommen kann, weil die Protease in relativ stabiler Form auf dem RNA-Strang positioniert ist.

Reverse Transkription: Von der RNA zur DNA

Für die Spumaviren ist es im Unterschied zu allen anderen Retroviren charakteristisch, dass die RNA in DNA umgeschrieben wird, kurz bevor ein neues infektiöses Virus die Wirtszelle verlässt. Spumaviren sind daher DNA-haltig. Dies gilt in analoger Weise, wenn Spumaviren im Rahmen einer Gentherapie genutzt werden, um Erbmaterial in die krankhaft beschädigte DNA einer Zelle einzuschleusen. Innerhalb dieser Zelle muss dann keine Transkription von viraler RNA in DNA mehr stattfinden. Zudem ist die DNA im Virus sehr viel stabiler als eine vergleichbare RNA. Auch diese Besonderheit macht die Spumaviren für einen Einsatz in der Gentherapie attraktiv.

Perspektiven für die Anwendungsforschung

Die Wissenschaftler am Bayreuther Lehrstuhl für Biopolymere wollen ihre Forschungen weiterführen, um noch tiefer in die Strukturen und Prozesse von Spumaviren vorzudringen. "Wir vertrauen darauf, dass die so gewonnenen Einsichten eines Tages dazu beitragen können, effektive gentherapeutische Verfahren zu entwickeln, die frei sind von gravierenden Nebenwirkungen," erklärt Prof. Dr. Birgitta Wöhrl. "Intensive Grundlagenforschung ist in diesem Bereich unverzichtbar. Nur dadurch gewinnen wir die Erkenntnisse, auf die eine solide Anwendungsforschung und ein verantwortungsbewusster Einsatz in der Medizin angewiesen sind."

Ausführlichere Darstellung mit 2 Abbildungen (S. 5 bis 7):
http://www.uni-bayreuth.de/blick-in-die-forschung/10-2011.pdf
Veröffentlichung:
Maximilian J. Hartl, Jochen Bodem, Fabian Jochheim, Axel Rethwilm, Paul Rösch, and Birgitta M. Wöhrl,
Regulation of Foamy Virus Protease Activity by Viral RNA: a Novel and Unique Mechanism among Retroviruses
in: The Journal of Virology, May 2011, Vol. 85, No. 9, pp. 4462-4469
DOI-Bookmark: 10.1128/JVI.02211-10
Ansprechpartner für weitere Informationen:
Prof. Dr. Birgitta Wöhrl
Lehrstuhl für Biopolymere
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3542
E-Mail: birgitta.woehrl@uni-bayreuth.de
Dr. Maximilian Hartl
Lehrstuhl für Biopolymere
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-3869
E-Mail: maximilian.hartl@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de/blick-in-die-forschung/10-2011.pdf

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie