Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Implodierte These um explodierte Saurier

27.03.2012
Durch Faulgase explodierte Kadaver – damit erklärte sich die Wissenschaft während Jahrzehnten rätselhafte Knochenanordnungen bei praktisch vollständig erhaltenen Saurier-Skeletten.

Nun beweist ein schweizerisch-deutsches Forschungsteam: Diese Kadaver sind auf den Meeresgrund gesunken und nicht explodiert. Die Sedimentologen und Paläontologen der Universitäten Zürich und Basel widerlegen somit den Mythos von explodierenden Meeresreptilien.



Nicht explodiert: Ichthyosaurier-Weibchen mit herausgespülten Embryonen, gefunden in Holzmaden (D). Foto: UZH

Das vor 182 Millionen Jahren verendete trächtige Ichthyosaurier-Weibchen aus Holzmaden (D) gab den Forschern schon lange Rätsel auf: Das Skelett des ausgestorbenen Meeresreptils ist fast tadellos erhalten, die versteinerten Knochen des Muttertiers liegen weitgehend im anatomischen Verband. Ganz anders die Knochen der Ichthyosaurier-Embryonen: Sie liegen zumeist verstreut ausserhalb des Mutterleibes. Solch eigenartige Knochenanordnungen sind bei Ichthyosaurier-Skeletten immer wieder feststellbar.

Gemäss gängiger Lehrmeinung soll es sich dabei um die Folge von explodierten Kadavern handeln: Faulgase, die im Lauf des Zersetzungsprozesses entstehen, blähen den Kadaver und bringen ihn zum Platzen. Durch solche Explosionen sollen selbst Knochen von Embryonen aus dem Leib geschleudert werden können. Mit einer aufwendigen Messreihe und einer Analyse der physikalisch-biologischen Rahmenbedingungen gelang es einem Forschungsteam von Sedimentologen, Paläontologen und Forensikern, den Mythos von explodierenden Saurierkadavern zu widerlegen.

Zu geringer Faulgas-Druck

Um den Druck der jeweiligen Gase zu beurteilen, die im Inneren eines faulenden Ichthyosauriers tatsächlich entstehen können, suchten die Forscher Vergleichsmodelle und wurden bei menschlichen Leichnamen fündig: Menschen und viele Ichthyosaurier-Arten besitzen ein ähnliches Grössenspektrum. Deshalb kann mit der Bildung ähnlicher Faulgasmengen bei ihrer Zersetzung gerechnet werden. Am Institut für Forensische Medizin in Frankfurt a. M. wurde hundert Leichen durch den Bauchnabel ein Druckmessgerät in die Bauchhöhle eingeführt. Die so gemessenen Faulgas-Drücke liegen bei lediglich 0,035 bar. Übertragen auf die Ichthyosaurier-Kadaver, die unter Wassersäulen von 50 bis 150 Meter zu liegen kamen, wären aber Faulgas-Drücke von mehr als 5 bis 15 bar erforderlich gewesen, um eine Explosion herbeizuführen. Gemäss dem Zürcher Paläontologen Christian Klug sind Gasdrücke dieser Dimension und damit eigentliche Explosionen unmöglich: «Grosse Wirbeltierleichen, die sich zersetzen, können nicht als natürliche Sprengladungen fungieren.» Und er ist überzeugt: «Unsere Ergebnisse lassen sich generell auf lungenatmende Wirbeltiere übertragen.»

Was vor 182 Millionen Jahren tatsächlich geschah

Das Schicksal von Ichthyosaurier-Kadavern lässt sich laut den Forschen folgendermassen rekonstruieren: Normalerweise sanken die Körper sofort nach dem Tod auf den Meeresgrund. In sehr tiefen lebensfreundlichen Gewässern wurden sie am Meeresboden durch Fäulnis, Aasfresser, knochenzerstörende Organismen und Lösungsvorgänge vollständig abgebaut. Bei geringerer Wassertiefe (bis zu 50 m) und einer Temperatur über 4 Grad Celsius dagegen trieben die Kadaver häufig durch die sich im Körperinneren ansammelnden Fäulnisgase wieder zur Wasseroberfläche auf. An der Wasseroberfläche zerfielen sie, dem Wellengang und Aasfressern ausgesetzt, innerhalb weniger Tage bis Wochen. Die absinkenden Knochen wurden grossflächig auf dem Meeresgrund verstreut.

Mehr oder weniger im anatomischen Verband blieben Ichthyosaurier-Skelette nur unter sehr speziellen Voraussetzungen erhalten: Bei Sauerstoffarmut und mittleren Wassertiefen sowie unbedeutender Wasserbewegung. Weil nur dann die Faulgase durch den hohen Wasserdruck genügend stark komprimiert und in den Körperflüssigkeiten gelöst wurden und aufgrund fehlender Aasfresser die Kadaver nicht vollständig abgebaut wurden. Der Kadaver des Ichthyosaurier-Weibchens aus Holzmaden sank folglich auf den Grund des bis zu 150 Meter tiefen Meeres, wo er sich zersetzte. Dabei wurden die zerfallenen Embryo-Skelette durch geringfûgige Strömungen am Meeresgrund aus dem Mutterleib transportiert.

Literatur:
Achim Reisdorf, Roman Bux, Daniel Wyler, Mark Benecke, Christian Klug, Michael Maisch, Peter Fornaro, Andreas Wetzel (2012): Float, explode or sink: post-mortem fate of lung-breathing marine vertebrates. In: Michael Wuttke & Achim Reisdorf (eds): Taphonomic processes in terrestrial and marine environments. – Palaeobiodiversity and Palaeoenvironments, 92(1): 67-81. DOI: 10.1007/s12549-011-0067-z
Kontakt:
Christian Klug
Paläontologisches Institut und Museum
Universität Zürich
Tel. +41 76 472 74 34
E-Mail: chklug@pim.uzh.ch

Nathalie Huber | idw
Weitere Informationen:
http://www.mediadesk.uzh.ch/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die Evolutionsgeschichte der Wespen, Bienen und Ameisen erstmals entschlüsselt
23.03.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht Riesensalamander, Geckos und Olme – Verschwundene Artenvielfalt in Sibirien
23.03.2017 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Impfstoffe zuverlässig inaktivieren mit Elektronenstrahlen

23.03.2017 | Biowissenschaften Chemie

Darmkrebs: Wenn die Wachstumsbremse fehlt

23.03.2017 | Biowissenschaften Chemie

Riesensalamander, Geckos und Olme – Verschwundene Artenvielfalt in Sibirien

23.03.2017 | Biowissenschaften Chemie