Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Impfstoffe aus dem Reaktor

27.02.2015

Wenn eine weltumspannende Pandemie durch Grippeviren droht, könnte die Impfstoffproduktion an ihre Grenzen kommen. Denn der Grippe-Impfstoff wird heute größtenteils noch in bebrüteten Hühnereiern erzeugt. Udo Reichl, Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme, und seine Mitarbeiter erforschen daher eine vollautomatische Produktion in Zellkulturen, die im Krisenfall Impfstoff in großer Menge liefern soll.

Zu den Waffen gegen die Grippe gehört das Ei, das ganz gewöhnliche Hühnerei. Denn so ein Ei ist ein Biotechnologie-Labor im Kleinen. 1931 machte der Pathologe Ernest W. Goodpasture von der Vanderbilt University in Nashville eine folgenreiche Entdeckung. Er pikste ein bebrütetes Ei mit einer feinen Nadel an und infizierte es mit Grippeviren. Im Ei vermehrten sich die Viren prächtig. Als Goodpasture nach einigen Tagen ein wenig Flüssigkeit aus dem Ei absaugte und sie untersuchte, war die Anzahl der Viren in die Höhe geschossen. Goodpasture war sofort klar: Eier sind geradezu ideal für die Vermehrung von Grippeviren – und das perfekte Werkzeug für die Herstellung von Impfstoffen. Denn für Impfungen braucht man Viren.


Wandelbares Virus: Der Grippe-Erreger verändert sich ständig. Daher müssen Wissenschaftler bei jeder drohenden Epidemie schnell einen neuen Impfstoff entwickeln – und Pharmaunternehmen müssen ihn rasch in großen Mengen produzieren.

© SPL-Agentur Focus

Der Trick besteht darin, den Körper behutsam mit Viren anzuimpfen, ohne ihn krank zu machen. So lernt das Immunsystem den Krankheitserreger kennen und kann eine Abwehr gegen ihn entwickeln. Zu diesem Zweck nutzt die Medizin drei verbreitete Impfmethoden. Bei der ersten spritzt man eine große Zahl abgetöteter Viren, bei der zweiten eine geringere Zahl von Viren, die abgeschwächt und nicht mehr infektiös sind. Bei der dritten Methode verabreicht man nur Bruchstücke der Virenhülle oder einzelne Virenproteine. In jedem Falle aber sind Viren nötig.

Herstellung von Impfstoffen soll effizienter werden

Goodpastures Methode ist inzwischen 80 Jahre alt und wurde immer weiter verfeinert. Zur Herstellung von Influenzaimpfstoffen jedoch wird das Ei noch immer genutzt. 95 Prozent aller Grippeimpfdosen enthalten auch heute noch Viren, die in Eiern vermehrt wurden. Doch inzwischen stößt das Verfahren an seine Grenzen. Denn für eine einzige Impfdosis benötigt man ein oder zwei Eier, die im Brutkasten bebrütet wurden. Um ausreichend Impfstoff für ein ganzes Land herzustellen, sind folglich mehrere Millionen Eier nötig.

Für die Europäische Union konnte auf diese Weise bislang noch ein ausreichend großer Vorrat an Impfstoffen für die nächste Grippewelle angelegt werden. „Aber was ist, wenn in China oder Indien, Ländern mit zusammen mehr als zwei Milliarden Menschen, eine Epidemie ausbricht? Dann kommt man mit der Produktion nicht mehr hinterher“, sagt Udo Reichl, Direktor der Abteilung „Bioprozesstechnik“ am Max- Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg.

Der Biologe und Verfahrenstechniker arbeitet mit seinem Team daran, Alternativen zur Impfstoffproduktion im Ei zu entwickeln. Wie Impfstoffhersteller und andere Forschungsgruppen weltweit setzt er dabei auf tierische Zellen, die er in Laborgefäßen und Bioreaktoren kultiviert. Doch ein etabliertes Verfahren in der pharmazeutischen Produktion zu ersetzen ist teuer. Entsprechend zurückhaltend ist die Industrie damit. Deshalb möchte Udo Reichl die Herstellung von Impfstoffen in Zellkulturen so effizient machen, dass Unternehmen darin eine lohnende Alternative sehen.

Die Zellen, die für die Virenproduktion infrage kommen, wurden meistens schon vor vielen Jahren oder gar Jahrzehnten aus verschiedenen Lebewesen und Organen extrahiert – aus Affen, Hamstern oder Hunden zum Beispiel. Viele dieser Zelllinien sind unsterblich, sie können sich unendlich teilen. Daneben gibt es neue Zelllinien, die in Forschungseinrichtungen oder von Biotech- Firmen genetisch unsterblich gemacht wurden und sich so ebenfalls für die Herstellung von Arzneimitteln eignen.

Das Team um Udo Reichl hat sich für seine Forschungsarbeiten mehrere solcher Zelllinien ausgesucht, in denen sich Viren besonders gut vermehren. „Das ist schon lustig“, sagt Reichl, „andere Wissenschaftler sind damit beschäftigt, Viren zu bekämpfen und ihre Zahl möglichst gering zu halten. Wir aber wollen eine Zelle dazu bringen, so viele Viren wie möglich zu produzieren. Wir arbeiten nicht anti-, sondern proviral.“

Es ist faszinierend und erschreckend zugleich, wie ein Virus eine Zelle infiziert und dazu bringt, Tausende Virenkopien freizusetzen. Ein Grippevirus etwa gleicht einer stachligen Kugel. Bei diesen Stacheln handelt es sich um die Eiweiße Hämagglutinin und Neuraminidase. An der Spitze des Hämagglutinins sitzt eine Art Schlossstruktur, mit der das Virus gezielt an die Oberfläche von tierischen oder menschlichen Zellen andocken kann. Es hängt vor allem von der Feinstruktur dieser Bindestelle ab, ob die Strukturen auf der Zelloberfläche wie ein Schlüssel ins Schloss zum Viren-Hämagglutinin passen – und ob ein Virus so Zugang zu einer Zelle erhält.

Kampf gegen die Grippe als Wettlauf gegen die Zeit

Findet das Schloss auf der Virenoberfläche einen Schlüssel auf der Zelloberfläche, nimmt das Unheil seinen Lauf. Die Membran der Wirtszelle öffnet sich, das Virus dringt in die Zelle ein und entlässt seine Erbgutstränge ins Zellinnere. Das Virus programmiert die Zelle um: Sie wird zur Virenproduktionsstätte. Sie synthetisiert brav Virenbestandteile, die anschließend zu Hunderten oder Tausenden neuer Viren zusammengesetzt werden und sich von der Zelloberfläche abschnüren. Für diese Abschnürung ist das Vireneiweiß Neuraminidase wichtig. Für Mensch und Tier ist es fatal, wenn sich die Viren so prächtig vermehren – dann bricht die Krankheit erst richtig aus. Für die Impfstoffproduktion aber ist das ideal.

Während Grippeviren heute noch zum größten Teil im Ei produziert werden, züchtet man andere Virenarten schon lange in Zellkulturen. Doch das Ziel der Impfstoffentwickler ist in beiden Fällen das gleiche: in kurzer Zeit große Mengen von Viren herzustellen, um im Falle einer Epidemie oder gar weltumspannenden Pandemie ausreichend Impfstoff verfügbar zu machen. Fatalerweise lassen sich viele Impfstoffe nicht auf Vorrat produzieren. Denn Viren, vor allem Grippeviren, sind höchst wandlungsfähig. So entstehen ständig neue Erreger, gegen die der vorhandene Impfstoff nicht hilft.

Der Kampf gegen die Grippeviren ist deshalb ein Wettlauf gegen die Zeit. Gelingt es den Wissenschaftlern, eine neue Virenvariante aufzuspüren und die Impfstoffe an sie anzupassen, ehe sich der Erreger zu einer großen Grippewelle auswächst? Häufig gewinnen Pharmahersteller und Forscher das Rennen. Oft aber sind die Viren schneller. Dann wird es heikel, denn dann breitet sich das Virus schnell zur Pandemie aus. Dann wäre es gut, eine vollautomatische Grippeviren- Zuchtmaschine zu haben, die sich schnell hochfahren lässt und die Viren in großer Zahl ausstößt – eine Produktionslinie, wie Reichl sie entwickeln will.

Vollständiger Text: http://www.mpg.de/grippeimpfung

Ansprechpartner

Prof. Dr.-Ing. Udo Reichl
Leiter Fachgruppe Bioprozesstechnik

Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
Telefon: +49 391 6110-200

E-Mail: reichl@mpi-magdeburg.mpg.de


PD Dr. Yvonne Genzel
Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
E-Mail: genzel@mpi-magdeburg.mpg.de

Tim Schröder | Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunabwehr ohne Kollateralschaden
23.01.2017 | Universität Basel

nachricht Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens
23.01.2017 | Verband Biologie, Biowissenschaften und Biomedizin in Deutschland e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie