Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Impfstoffe aus dem Reaktor

27.02.2015

Wenn eine weltumspannende Pandemie durch Grippeviren droht, könnte die Impfstoffproduktion an ihre Grenzen kommen. Denn der Grippe-Impfstoff wird heute größtenteils noch in bebrüteten Hühnereiern erzeugt. Udo Reichl, Direktor am Max-Planck-Institut für Dynamik komplexer technischer Systeme, und seine Mitarbeiter erforschen daher eine vollautomatische Produktion in Zellkulturen, die im Krisenfall Impfstoff in großer Menge liefern soll.

Zu den Waffen gegen die Grippe gehört das Ei, das ganz gewöhnliche Hühnerei. Denn so ein Ei ist ein Biotechnologie-Labor im Kleinen. 1931 machte der Pathologe Ernest W. Goodpasture von der Vanderbilt University in Nashville eine folgenreiche Entdeckung. Er pikste ein bebrütetes Ei mit einer feinen Nadel an und infizierte es mit Grippeviren. Im Ei vermehrten sich die Viren prächtig. Als Goodpasture nach einigen Tagen ein wenig Flüssigkeit aus dem Ei absaugte und sie untersuchte, war die Anzahl der Viren in die Höhe geschossen. Goodpasture war sofort klar: Eier sind geradezu ideal für die Vermehrung von Grippeviren – und das perfekte Werkzeug für die Herstellung von Impfstoffen. Denn für Impfungen braucht man Viren.


Wandelbares Virus: Der Grippe-Erreger verändert sich ständig. Daher müssen Wissenschaftler bei jeder drohenden Epidemie schnell einen neuen Impfstoff entwickeln – und Pharmaunternehmen müssen ihn rasch in großen Mengen produzieren.

© SPL-Agentur Focus

Der Trick besteht darin, den Körper behutsam mit Viren anzuimpfen, ohne ihn krank zu machen. So lernt das Immunsystem den Krankheitserreger kennen und kann eine Abwehr gegen ihn entwickeln. Zu diesem Zweck nutzt die Medizin drei verbreitete Impfmethoden. Bei der ersten spritzt man eine große Zahl abgetöteter Viren, bei der zweiten eine geringere Zahl von Viren, die abgeschwächt und nicht mehr infektiös sind. Bei der dritten Methode verabreicht man nur Bruchstücke der Virenhülle oder einzelne Virenproteine. In jedem Falle aber sind Viren nötig.

Herstellung von Impfstoffen soll effizienter werden

Goodpastures Methode ist inzwischen 80 Jahre alt und wurde immer weiter verfeinert. Zur Herstellung von Influenzaimpfstoffen jedoch wird das Ei noch immer genutzt. 95 Prozent aller Grippeimpfdosen enthalten auch heute noch Viren, die in Eiern vermehrt wurden. Doch inzwischen stößt das Verfahren an seine Grenzen. Denn für eine einzige Impfdosis benötigt man ein oder zwei Eier, die im Brutkasten bebrütet wurden. Um ausreichend Impfstoff für ein ganzes Land herzustellen, sind folglich mehrere Millionen Eier nötig.

Für die Europäische Union konnte auf diese Weise bislang noch ein ausreichend großer Vorrat an Impfstoffen für die nächste Grippewelle angelegt werden. „Aber was ist, wenn in China oder Indien, Ländern mit zusammen mehr als zwei Milliarden Menschen, eine Epidemie ausbricht? Dann kommt man mit der Produktion nicht mehr hinterher“, sagt Udo Reichl, Direktor der Abteilung „Bioprozesstechnik“ am Max- Planck-Institut für Dynamik komplexer technischer Systeme in Magdeburg.

Der Biologe und Verfahrenstechniker arbeitet mit seinem Team daran, Alternativen zur Impfstoffproduktion im Ei zu entwickeln. Wie Impfstoffhersteller und andere Forschungsgruppen weltweit setzt er dabei auf tierische Zellen, die er in Laborgefäßen und Bioreaktoren kultiviert. Doch ein etabliertes Verfahren in der pharmazeutischen Produktion zu ersetzen ist teuer. Entsprechend zurückhaltend ist die Industrie damit. Deshalb möchte Udo Reichl die Herstellung von Impfstoffen in Zellkulturen so effizient machen, dass Unternehmen darin eine lohnende Alternative sehen.

Die Zellen, die für die Virenproduktion infrage kommen, wurden meistens schon vor vielen Jahren oder gar Jahrzehnten aus verschiedenen Lebewesen und Organen extrahiert – aus Affen, Hamstern oder Hunden zum Beispiel. Viele dieser Zelllinien sind unsterblich, sie können sich unendlich teilen. Daneben gibt es neue Zelllinien, die in Forschungseinrichtungen oder von Biotech- Firmen genetisch unsterblich gemacht wurden und sich so ebenfalls für die Herstellung von Arzneimitteln eignen.

Das Team um Udo Reichl hat sich für seine Forschungsarbeiten mehrere solcher Zelllinien ausgesucht, in denen sich Viren besonders gut vermehren. „Das ist schon lustig“, sagt Reichl, „andere Wissenschaftler sind damit beschäftigt, Viren zu bekämpfen und ihre Zahl möglichst gering zu halten. Wir aber wollen eine Zelle dazu bringen, so viele Viren wie möglich zu produzieren. Wir arbeiten nicht anti-, sondern proviral.“

Es ist faszinierend und erschreckend zugleich, wie ein Virus eine Zelle infiziert und dazu bringt, Tausende Virenkopien freizusetzen. Ein Grippevirus etwa gleicht einer stachligen Kugel. Bei diesen Stacheln handelt es sich um die Eiweiße Hämagglutinin und Neuraminidase. An der Spitze des Hämagglutinins sitzt eine Art Schlossstruktur, mit der das Virus gezielt an die Oberfläche von tierischen oder menschlichen Zellen andocken kann. Es hängt vor allem von der Feinstruktur dieser Bindestelle ab, ob die Strukturen auf der Zelloberfläche wie ein Schlüssel ins Schloss zum Viren-Hämagglutinin passen – und ob ein Virus so Zugang zu einer Zelle erhält.

Kampf gegen die Grippe als Wettlauf gegen die Zeit

Findet das Schloss auf der Virenoberfläche einen Schlüssel auf der Zelloberfläche, nimmt das Unheil seinen Lauf. Die Membran der Wirtszelle öffnet sich, das Virus dringt in die Zelle ein und entlässt seine Erbgutstränge ins Zellinnere. Das Virus programmiert die Zelle um: Sie wird zur Virenproduktionsstätte. Sie synthetisiert brav Virenbestandteile, die anschließend zu Hunderten oder Tausenden neuer Viren zusammengesetzt werden und sich von der Zelloberfläche abschnüren. Für diese Abschnürung ist das Vireneiweiß Neuraminidase wichtig. Für Mensch und Tier ist es fatal, wenn sich die Viren so prächtig vermehren – dann bricht die Krankheit erst richtig aus. Für die Impfstoffproduktion aber ist das ideal.

Während Grippeviren heute noch zum größten Teil im Ei produziert werden, züchtet man andere Virenarten schon lange in Zellkulturen. Doch das Ziel der Impfstoffentwickler ist in beiden Fällen das gleiche: in kurzer Zeit große Mengen von Viren herzustellen, um im Falle einer Epidemie oder gar weltumspannenden Pandemie ausreichend Impfstoff verfügbar zu machen. Fatalerweise lassen sich viele Impfstoffe nicht auf Vorrat produzieren. Denn Viren, vor allem Grippeviren, sind höchst wandlungsfähig. So entstehen ständig neue Erreger, gegen die der vorhandene Impfstoff nicht hilft.

Der Kampf gegen die Grippeviren ist deshalb ein Wettlauf gegen die Zeit. Gelingt es den Wissenschaftlern, eine neue Virenvariante aufzuspüren und die Impfstoffe an sie anzupassen, ehe sich der Erreger zu einer großen Grippewelle auswächst? Häufig gewinnen Pharmahersteller und Forscher das Rennen. Oft aber sind die Viren schneller. Dann wird es heikel, denn dann breitet sich das Virus schnell zur Pandemie aus. Dann wäre es gut, eine vollautomatische Grippeviren- Zuchtmaschine zu haben, die sich schnell hochfahren lässt und die Viren in großer Zahl ausstößt – eine Produktionslinie, wie Reichl sie entwickeln will.

Vollständiger Text: http://www.mpg.de/grippeimpfung

Ansprechpartner

Prof. Dr.-Ing. Udo Reichl
Leiter Fachgruppe Bioprozesstechnik

Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
Telefon: +49 391 6110-200

E-Mail: reichl@mpi-magdeburg.mpg.de


PD Dr. Yvonne Genzel
Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg
E-Mail: genzel@mpi-magdeburg.mpg.de

Tim Schröder | Max-Planck-Institut für Dynamik komplexer technischer Systeme, Magdeburg

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der lange Irrweg der ADP Ribosylierung
26.04.2018 | Max-Planck-Institut für Biologie des Alterns

nachricht Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht
25.04.2018 | Universitätsklinikum Heidelberg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der lange Irrweg der ADP Ribosylierung

26.04.2018 | Biowissenschaften Chemie

Belle II misst die ersten Teilchenkollisionen

26.04.2018 | Physik Astronomie

Anzeichen einer Psychose zeigen sich in den Hirnwindungen

26.04.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics