Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immuntherapie mit regulatorischen T-Zellen

22.12.2014

Regulatorische T-Zellen (Treg) sind wichtig für die Unterdrückung unerwünschter Immunprozesse. Sie schützen den Organismus einerseits vor überschießenden Immunreaktionen und der Entstehung von Autoimmunerkrankungen.

Andererseits nutzen Tumorzellen diese Funktion, um Angriffen des Immunsystems zu entkommen. Die zielgerichtete Aktivierung und Deaktivierung von Treg bietet enormes Potential zur Korrektur fehlgesteuerter Immunreaktionen. Das Team von Dr. Michael Albert hat Methoden entwickelt, um Mechanismen in Treg zu beschreiben, die deren immunregulatorische Fähigkeiten steuern. Ein wichtiger Schritt um Treg gezielt einzusetzen bei Autoimmunerkrankungen, Krebs und Stammzelltransplantationen.


Netzwerk von Genaktivitäten innerhalb des T-Zellrezeptor-Signalwegs, spezifisch für Treg. Rot markiert sind hochregulierte, blau markiert sind herabregulierte Gene (Rechteck) u. miRNA (Quelle: Albert)

Regulatorische T-Zellen (Treg) übernehmen eine wichtige Funktion bei der Aufrechterhaltung des Immungleichgewichts. Eine verminderte Aktivität von Treg kann aufgrund einer fehlgeleiteten Unterscheidung zwischen fremden und körpereigenen Strukturen zur Entstehung von Autoimmunerkrankungen und zu überschießenden Immunreaktionen nach bakteriellen oder viralen Infektionen führen.

Umgekehrt begünstigt ein Überschuss an Treg die Entstehung von Krebs durch Unterdrückung der Tumorüberwachung des Immunsystems. Die protektiven Eigenschaften von Treg sind auch auf die Stammzelltransplantation übertragbar, um eine Toleranz zwischen den Blutzellen des Stammzellspenders und dem Patienten herzustellen. Damit bieten sich Patienten, die trotz intensiver Chemotherapie nicht von ihrer Leukämie geheilt werden konnten, eine zusätzliche Chance die Krebserkrankung zu besiegen.

Die Entstehung von Treg wird über ein komplexes Netzwerk von Signalmolekülen innerhalb der Zelle reguliert. Um dieses Netzwerk zu beschreiben, haben die Forscher die Genaktivitäten in Treg beschrieben und Prozesse identifiziert, die spezifisch in Treg ablaufen. Innerhalb dieses Netzwerks wurden zusätzlich sogenannte microRNAs (miR) identifiziert, die eine wichtige Rolle bei der Feinjustierung von Genaktivitäten einnehmen.

„Unsere Forschungsarbeiten haben dazu beigetragen, die Regulationsmechanismen der Funktion von Treg besser zu beschreiben. Die Kenntnis über diese Mechanismen ist eine wichtige Voraussetzung für die Entwicklung einer zielgerichteten therapeutischen Anwendung von Treg“, fasst PD Dr. Michael Albert die Forschungsergebnisse zusammen.

Kontakt (Projektleitung):
PD Dr. Michael Albert, Abteilung Hämatologie / Onkologie, Dr. von Haunersches Kinderspital, Telefon: E-Mail: michael.albert@med.lmu.de

Die Wilhelm Sander-Stiftung hat dieses Forschungsprojekt mit etwa 150.000 Euro gefördert. Zweck der Stiftung ist die medizinische Forschung, insbesondere von Projekten im Rahmen der Krebsbekämpfung. Seit Gründung der Stiftung wurden dabei insgesamt über 190 Mio. Euro für die Forschungsförderung in Deutschland und der Schweiz bewilligt. Die Stiftung geht aus dem Nachlass des gleichnamigen Unternehmers hervor, der 1973 verstorben ist.

Weitere Informationen zur Stiftung: http://www.wilhelm-sander-stiftung.de

Bernhard Knappe | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics