Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immunologie: Leben und leben lassen

09.03.2017

Damit die natürliche Darmflora gedeihen kann, muss das Immunsystem fremde Bakterien tolerieren. LMU-Forscher beschreiben, wie sonst alarmbereite Immunzellen diesen Schutz gewährleisten.

Das Immunsystem steht für eine besondere Art der Distinktion. Stets muss es zwischen selbst und fremd unterscheiden, zwischen körpereigenen Strukturen und mitunter pathogenen Eindringlingen, die es zu bekämpfen gilt, zwischen Freund und Feind sozusagen.


Entzündetes Darmepithel. Aufnahme: AG Brocker/LMU

Im Darm etwa ist das kein leichter Job. Die Abwehrkräfte dürfen zum Beispiel nicht die natürliche Darmflora aus Bakterien bekämpfen, nur weil es sich um Bakterien und damit eben nicht um körpereigene Strukturen handelt.

Ein deutsch-italienisches Forscherteam hat nun einen Mechanismus entschlüsselt, der hilft, dieses komplizierte Immun-Gleichgewicht im Darm auszutarieren. Die Wissenschaftler unter der Leitung von Professor Thomas Brocker, Direktor des Instituts für Immunologie der LMU, berichten davon in Nature Communications, dem Open-Access-Ableger des renommierten Fachblattes Nature.

Eine Schlüsselrolle für diese Balance spielen die sogenannten Dendritischen Zellen. Sie haben zwei durchaus gegensätzliche Aufgaben: Sie stoßen bei Infektionen beispielsweise eine Immunantwort an. Gleichzeitig aber können sie auch die immunologische Toleranz befördern, notfalls also einen Vorstoß der Abwehrkräfte unterdrücken. So gesehen vereinen sie Kampf und Diplomatie.

In ihrer Friedensmission stimulieren sie sogenannte induzierte regulatorische T-Zellen (iTregs), die die immunologische Toleranz regulieren und die Aktivierung des Immunsystems unterdrücken. Dafür sammeln die Dendritischen Zellen in der Darmschleimhaut Proteine der vergesellschafteten Bakterien und wandern damit zu den Lymphknoten, die den Darm versorgen.

Dort präsentieren sie an ihrer Oberfläche kleine Ausschnitte dieser Proteine, um regulatorische T-Zellen auszubilden. „Wir glauben, dass diese iTregs spezifisch sind für die Proteine der Bakterien in der Darmflora“, sagt Brocker.

Ständig wandern Dendritische Zellen, besonders die eines Subtyps, den Immunologen mit CD103+ bezeichnen, Richtung Lymphknoten und halten so das Immunsystem auf dem Laufenden. Doch wenn dieser Vorgang nahezu einem Automatismus gleicht: Welcher Mechanismus, so fragten die Wissenschaftler, kann das immunologische Toleranzedikt außer Kraft setzen und im Alarmfall eine Immunabwehr anstoßen? Als Schaltknopf identifizierten die Forscher den länger schon bekannten Signalweg, der über das Protein CD40 läuft: Dieses Oberflächenprotein lässt die Dendritischen Zellen ihre Funktion ins Gegenteil verkehren. Es koppelt an Zellen der Immunantwort und aktiviert sie.

Wie durchschlagend diese Kursänderung ist, zeigten die Wissenschaftler am Tiermodell. Mäuse, bei denen der Signalweg künstlich dauerhaft auf „An“ gestellt ist, entwickeln schwere Darmentzündungen, im Übrigen aber keine anderen Krankheitssymptome. Dendritische Zellen wandern zwar weiterhin vom Darmepithel zu den Lymphknoten, gehen dort aber den Zelltod (Apoptose) ein. So entstehen keine regulatorischen T-Zellen mehr, um die Toleranz gegenüber der Darmflora zu fördern.

Das ruft eine allgemeine Immunantwort hervor, T-Lymphozyten wandern ein, die Darmwand schwillt entzündlich an. Bekommen die Mäuse aber Antibiotika, die die Darmflora abtöten, ist der Spuk schnell vorbei, die Mäuse werden gesund.

„Für das immunologische Gleichgewicht im Darm, die sogenannte Homöostase, ist ausschlaggebend, dass die Achse über CD103-positive Dendritische Zellen und regulatorische T-Zellen einwandfrei funktioniert“, sagt Brocker. Ob die regulatorischen T-Zellen tatsächlich so spezifisch auf die Darmbakterien reagieren, wie diese Befunde nahelegen, wollen die Wissenschaftler nun weiter untersuchen.

Nature Communications 2017

Publikation:
Christian Barthels, Ana Ogrinc, Verena Steyer, Stefanie Meier, Ferdinand Simon, Maria Wimmer, Andreas Blutke, Tobias Straub, Ursula Zimber-Strobl, Esther Lutgens, Peggy Marconi, Caspar Ohnmacht, Debora Garzetti, Bärbel Stecher and Thomas Brocker:
CD40-signalling abrogates induction of RORgammat+ Treg cells by intestinal CD103+ DCs and causes fatal colitis
Nature Communications 2017

Kontakt
Prof. Dr. Thomas Brocker
Institut für Immunologie, LMU
Tel.: +49 (0) 89/2180-75669
E-Mail: tbrocker@med.uni-muenchen.de

Luise Dirscherl | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nesseltiere steuern Bakterien fern
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Die Immunabwehr gegen Pilzinfektionen ausrichten
21.09.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften