Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immune cell 'survival' gene key to better myeloma treatments

04.02.2013
Scientists have identified the gene essential for survival of antibody-producing cells, a finding that could lead to better treatments for diseases where these cells are out of control, such as myeloma and chronic immune disorders.

The discovery that a gene called Mcl-1 is critical for keeping this vital immune cell population alive was made by researchers at Melbourne's Walter and Eliza Hall Institute. Associate Professor David Tarlinton, Dr Victor Peperzak and Dr Ingela Vikstrom from the institute's Immunology division led the research, which was published today in Nature Immunology.

Antibody-producing cells, also known as plasma cells, live in the bone marrow and make antibodies that provide a person with long-term protection from viruses and bacteria, Associate Professor Tarlinton said. "Plasma cells are produced after vaccination or infection and are responsible for the immune 'memory' that can persist in humans for 70 or 80 years. In this study, we found that plasma cells critically rely on Mcl-1 for their continued survival and, without it, they die within two days," he said.

Dr Peperzak said the team was surprised to find that plasma cells used this as a 'failsafe' mechanism in controlling their survival. "One of the interesting things we found is that because plasma cells rapidly destroy Mcl-1 proteins within the cell yet depend on it for their survival, they need continuous external signals to tell them to produce more Mcl-1 protein," Dr Peperzak said. "This keeps the plasma cells under tight control, with Mcl-1 acting like a timer that constantly counts down and, if not reset, instructs the cell to die."

Plasma cells are vital to the immune response, but can be dangerous if not properly controlled, Associate Professor Tarlinton said. "As with any immune cell, plasma cells are really quite dangerous in many respects and need to be tightly controlled," he said. "When they are out of control they continue to make antibodies that can be very damaging if there are too many. This happens in conditions such as myeloma – a cancer of plasma cells – and various forms of autoimmunity, such as systemic lupus erythamatosus or rheumatoid arthritis, where there are excessive levels of antibodies."

Myeloma is a blood cancer that affects more than 1200 Australians each year, and is more common in people over 60. It is caused by the uncontrolled production of abnormal plasma cells in the bone marrow and the build up of damaging antibodies in the blood. Rheumatoid arthritis and lupus are autoimmune diseases in which the antibodies produced by plasma cells attack and destroy the body's own tissues.

Associate Professor Tarlinton said that his hope was that the discovery could be used to develop new treatments for these conditions. "Myeloma in particular has a very poor prognosis, and is generally considered incurable," Associate Professor Tarlinton said. "Now that we know Mcl-1 is the one essential gene needed to keep plasma cells alive, we have begun 'working backwards' to identify all the critical molecules and signals needed to switch on Mcl-1 and keep the cells alive. Our hope is that we will identify some point in the internal cell signalling pathway, or a critical external molecule, that could be blocked to stop Mcl-1 being produced by the cell. This would be an important new platform for diseases that currently have no specific or effective treatment, such as myeloma, or offer new treatment options for people who don't respond well to existing treatments for diseases such as lupus or rheumatoid arthritis."

This research was supported by the National Health and Medical Research Council of Australia, Multiple Myeloma Research Foundation, European Molecular Biology Organization and the Victorian Government.

Liz Williams | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics