Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immer der Reihe nach: Molekülkontrolle am Nano-Sensor

19.03.2012
In der Natur gibt es viele Vorbilder für hochsensitive Sensoren. Ein Beispiel dafür sind die Geruchsrezeptoren der menschlichen Nase, die ganz speziell auf einzelne Moleküle ansprechen.

Davon inspiriert, hat ein Forscherteam der Technischen Universität München und der Goethe Universität Frankfurt jetzt ein System aus festkörperbasierten Nanoporen entwickelt, mit dem sich einzelne Moleküle identifizieren lassen.


Antikörper-selektive Nanopore: Diese 3D-Darstellung zeigt wie die Identität einzelner Proteine in einer modifizierten künstlichen Nanopore untersucht werden. Das in der Pore verankerte "Rezeptor-Protein" (rot-braun) bindet vorübergehend einen IgG-Antikörper (hellbraun), der durch die Pore wandert. Die Dauer der Wechselwirkung kann über den veränderten Stromfluss gemessen werden und gibt Auskunft über die biologische Funktion des Antikörpers. Die weißen Haare stellen eine selbsorganisierte Molekülschicht dar, die dazu dient, die restliche Oberfläche des Goldfilms biologisch zu inaktivieren. Bild: Christoph Hohmann/NIM


Künstliche Nanopore wird mit einem biologischen Rezeptor modifziert: Schematische Darstellung einer metallbeschichteten künstlichen Nanopore, die chemisch mit einem einzigen Rezeptor funktionalisiert ist. Damit können einzelne Proteine spezifisch an die Pore angebunden werden. Das An- und Abbinden des Proteins wird in der Stromkurve detektiert. Bild: U. Rant/TU München

Gegenüber früheren Arbeiten auf diesem Gebiet haben die Wissenschaftler erreicht, dass der Sensor zwei Eigenschaften vereint: er reagiert auf einzelne Moleküle und erkennt gleichzeitig ihre Identität. Die Arbeit wurde in der Fachzeitschrift Nature Nanotechnology veröffentlicht.

Die Entwicklung hochauflösender Nachweismethoden auf molekularer Ebene schreitet immer weiter voran. Inzwischen gibt es viel versprechende Ansätze für neue Nanowerkzeuge, mit denen sich selbst einzelne Moleküle identifizieren lassen. Eines dieser Verfahren arbeitet nach dem Prinzip einer Nanoschleuse, die Moleküle nur einzeln passieren lässt. Dem Wissenschaftler-Team aus München und Frankfurt ist es jetzt gelungen, einen solchen Nano-Sensor zusätzlich mit biologischen Funktionen auszustatten, so dass auch die Identität der durchgeschleusten Moleküle ermittelt werden kann.

Das Prinzip des Sensors: Mit Hilfe eines Elektronenstrahls bohren die Wissenschaftler winzige Löcher mit einem Durchmesser von 25 Nanometer in eine dünne Halbleitermembran aus Siliziumnitrid. Diese Öffnung ist gerade groß genug für ein einzelnes Molekül. Um sicherzugehen, dass Biomoleküle nicht zufällig an Unebenheiten der Pore binden, wird diese mit einer selbstorganisierenden Schicht ausgekleidet, an der Proteine nicht haften bleiben. In dieser Schicht ist der Rezeptor aus mehreren Nitrilotriessigsäure-Molekülen verankert. Dieser Rezeptor erkennt und bindet spezifische Moleküle, die vorab mit einem „Etikett“ aus sechs Aminosäuren (Histidin) ausgezeichnet wurden. Nach dem gleichen Prinzip können aber auch ganze Proteine in der Pore eingesetzt werden, die wiederum als Torwächter andere Proteine beim Durchtritt „kontrollieren“ und gegebenenfalls für eine bestimmte Zeit binden. Die anorganische Pore übernimmt damit die biologische Funktion des verankerten Proteins. Auf diese Weise konnten die Forscher auch Subklassen von IgG-Antikörpern aus Ratten und Hamstern unterscheiden.

Die Messungen an der Nanoschleuse laufen in einer Salzlösung ab. Legt man elektrische Spannung an, strömen die Ionen der Lösung durch die Poren. Sobald sich das passende Biomolekül an den Rezeptor bindet, verengt sich die Pore und der Stromfluss nimmt ab. Auf diese Weise kann das An- und Abbinden eines bestimmten Moleküls in Echtzeit beobachtet werden. Voraussetzung dafür ist allerdings, dass sich nur ein einziger Rezeptor in der Pore befindet – was den Wissenschaftlern mit diesem Verfahren zum ersten Mal gelang.

Die möglichen Anwendungsgebiete dieses biomimetischen sensorischen Systems sind vielversprechend. So könnten schwierige Probleme in der Proteomik mit diesem Ansatz realisierbar sein, etwa die Analyse der Proteinzusammensetzung einer einzelnen Zelle. Zum anderen könnte dieses System als schneller und sensitiver Biosensor für das Screening von Pharmazeutika oder zur Detektion von Biowaffen dienen.

„Bisher richtet sich die Nanoporenforschung vor allem auf DNA-Detektion und Sequenzierung. Unsere Ergebnisse zeigen, dass Nanoporen das Potenzial haben, sich zu einem wichtiges Werkzeug in der Proteinforschung zu entwickeln“, erklärt Dr. Ulrich Rant vom Walter-Schottky-Institut und Institute for Advanced Study an der TU München. „Und wer weiß, vielleicht finden Nanoporen-Proteinsensoren schon bald Anwendung in der medizinischen Diagnostik. Vorstellbar wäre zum Beispiel, bei Patienten molekulare Krankheitsmarker nachzuweisen, die in nur sehr geringen Konzentrationen vorkommen.“

„Die Zukunft bleibt spannend, da die Natur uns weiterhin in Selektivität und Spezifität voraus ist. Deshalb sind weitere Verbesserungen im Feld von sensorischen Systemen auf molekularer Ebene nötig“, ergänzt Prof. Robert Tampé vom Institut für Biochemie an der Goethe Universität Frankfurt. „Die Zusammenarbeit des Teams aus München und Frankfurt ist aber ein wichtiger Schritt in der Biosensorik und Nanodiagnostik auf Einzelmolekülebene.“
Die Arbeiten wurden gefördert aus Mitteln der Deutschen Forschungsgemeinschaft SFB 863 und SFB 807), TUM Institute for Advanced Study, Exzellenzcluster Nanosystems Initiative Munich, und Exzellenzcluster Macromolecular Complexes (Goethe-Universität Frankfurt).

Publikation:
Stochastic sensing of proteins with receptor-modified solid-state nanopores
Ruoshan Wei, Volker Gatterdam, Ralph Wieneke, Robert Tampé, and Ulrich Rant
Nature Nanotechnology, March 11, 2012. DOI: 10.1038/NNANO.2012.24

Kontakt:
Dr. Ulrich Rant
Walter Schottky Institut
Technische Universität München
Am Coulombwall 3
85748 Garching
Tel.: +49 (0)89 289 11578
E-Mail: ulrich.rant@wsi.tum.de
Web: http://www.wsi.tum.de/Research/AbstreitergroupE24/ResearchAreas
/BioNanostructures/tabid/136/Default.aspx

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nose2Brain – Effizientere Therapie von Multipler Sklerose
26.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität
25.04.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bestrahlung bei Hirntumoren? Eine neue, verlässlichere Einteilung erleichtert die Entscheidung

26.04.2017 | Medizin Gesundheit

Nose2Brain – Effizientere Therapie von Multipler Sklerose

26.04.2017 | Biowissenschaften Chemie

Bauübergabe der ALMA-Residencia

26.04.2017 | Architektur Bauwesen