Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Immer der Reihe nach: Molekülkontrolle am Nano-Sensor

19.03.2012
In der Natur gibt es viele Vorbilder für hochsensitive Sensoren. Ein Beispiel dafür sind die Geruchsrezeptoren der menschlichen Nase, die ganz speziell auf einzelne Moleküle ansprechen.

Davon inspiriert, hat ein Forscherteam der Technischen Universität München und der Goethe Universität Frankfurt jetzt ein System aus festkörperbasierten Nanoporen entwickelt, mit dem sich einzelne Moleküle identifizieren lassen.


Antikörper-selektive Nanopore: Diese 3D-Darstellung zeigt wie die Identität einzelner Proteine in einer modifizierten künstlichen Nanopore untersucht werden. Das in der Pore verankerte "Rezeptor-Protein" (rot-braun) bindet vorübergehend einen IgG-Antikörper (hellbraun), der durch die Pore wandert. Die Dauer der Wechselwirkung kann über den veränderten Stromfluss gemessen werden und gibt Auskunft über die biologische Funktion des Antikörpers. Die weißen Haare stellen eine selbsorganisierte Molekülschicht dar, die dazu dient, die restliche Oberfläche des Goldfilms biologisch zu inaktivieren. Bild: Christoph Hohmann/NIM


Künstliche Nanopore wird mit einem biologischen Rezeptor modifziert: Schematische Darstellung einer metallbeschichteten künstlichen Nanopore, die chemisch mit einem einzigen Rezeptor funktionalisiert ist. Damit können einzelne Proteine spezifisch an die Pore angebunden werden. Das An- und Abbinden des Proteins wird in der Stromkurve detektiert. Bild: U. Rant/TU München

Gegenüber früheren Arbeiten auf diesem Gebiet haben die Wissenschaftler erreicht, dass der Sensor zwei Eigenschaften vereint: er reagiert auf einzelne Moleküle und erkennt gleichzeitig ihre Identität. Die Arbeit wurde in der Fachzeitschrift Nature Nanotechnology veröffentlicht.

Die Entwicklung hochauflösender Nachweismethoden auf molekularer Ebene schreitet immer weiter voran. Inzwischen gibt es viel versprechende Ansätze für neue Nanowerkzeuge, mit denen sich selbst einzelne Moleküle identifizieren lassen. Eines dieser Verfahren arbeitet nach dem Prinzip einer Nanoschleuse, die Moleküle nur einzeln passieren lässt. Dem Wissenschaftler-Team aus München und Frankfurt ist es jetzt gelungen, einen solchen Nano-Sensor zusätzlich mit biologischen Funktionen auszustatten, so dass auch die Identität der durchgeschleusten Moleküle ermittelt werden kann.

Das Prinzip des Sensors: Mit Hilfe eines Elektronenstrahls bohren die Wissenschaftler winzige Löcher mit einem Durchmesser von 25 Nanometer in eine dünne Halbleitermembran aus Siliziumnitrid. Diese Öffnung ist gerade groß genug für ein einzelnes Molekül. Um sicherzugehen, dass Biomoleküle nicht zufällig an Unebenheiten der Pore binden, wird diese mit einer selbstorganisierenden Schicht ausgekleidet, an der Proteine nicht haften bleiben. In dieser Schicht ist der Rezeptor aus mehreren Nitrilotriessigsäure-Molekülen verankert. Dieser Rezeptor erkennt und bindet spezifische Moleküle, die vorab mit einem „Etikett“ aus sechs Aminosäuren (Histidin) ausgezeichnet wurden. Nach dem gleichen Prinzip können aber auch ganze Proteine in der Pore eingesetzt werden, die wiederum als Torwächter andere Proteine beim Durchtritt „kontrollieren“ und gegebenenfalls für eine bestimmte Zeit binden. Die anorganische Pore übernimmt damit die biologische Funktion des verankerten Proteins. Auf diese Weise konnten die Forscher auch Subklassen von IgG-Antikörpern aus Ratten und Hamstern unterscheiden.

Die Messungen an der Nanoschleuse laufen in einer Salzlösung ab. Legt man elektrische Spannung an, strömen die Ionen der Lösung durch die Poren. Sobald sich das passende Biomolekül an den Rezeptor bindet, verengt sich die Pore und der Stromfluss nimmt ab. Auf diese Weise kann das An- und Abbinden eines bestimmten Moleküls in Echtzeit beobachtet werden. Voraussetzung dafür ist allerdings, dass sich nur ein einziger Rezeptor in der Pore befindet – was den Wissenschaftlern mit diesem Verfahren zum ersten Mal gelang.

Die möglichen Anwendungsgebiete dieses biomimetischen sensorischen Systems sind vielversprechend. So könnten schwierige Probleme in der Proteomik mit diesem Ansatz realisierbar sein, etwa die Analyse der Proteinzusammensetzung einer einzelnen Zelle. Zum anderen könnte dieses System als schneller und sensitiver Biosensor für das Screening von Pharmazeutika oder zur Detektion von Biowaffen dienen.

„Bisher richtet sich die Nanoporenforschung vor allem auf DNA-Detektion und Sequenzierung. Unsere Ergebnisse zeigen, dass Nanoporen das Potenzial haben, sich zu einem wichtiges Werkzeug in der Proteinforschung zu entwickeln“, erklärt Dr. Ulrich Rant vom Walter-Schottky-Institut und Institute for Advanced Study an der TU München. „Und wer weiß, vielleicht finden Nanoporen-Proteinsensoren schon bald Anwendung in der medizinischen Diagnostik. Vorstellbar wäre zum Beispiel, bei Patienten molekulare Krankheitsmarker nachzuweisen, die in nur sehr geringen Konzentrationen vorkommen.“

„Die Zukunft bleibt spannend, da die Natur uns weiterhin in Selektivität und Spezifität voraus ist. Deshalb sind weitere Verbesserungen im Feld von sensorischen Systemen auf molekularer Ebene nötig“, ergänzt Prof. Robert Tampé vom Institut für Biochemie an der Goethe Universität Frankfurt. „Die Zusammenarbeit des Teams aus München und Frankfurt ist aber ein wichtiger Schritt in der Biosensorik und Nanodiagnostik auf Einzelmolekülebene.“
Die Arbeiten wurden gefördert aus Mitteln der Deutschen Forschungsgemeinschaft SFB 863 und SFB 807), TUM Institute for Advanced Study, Exzellenzcluster Nanosystems Initiative Munich, und Exzellenzcluster Macromolecular Complexes (Goethe-Universität Frankfurt).

Publikation:
Stochastic sensing of proteins with receptor-modified solid-state nanopores
Ruoshan Wei, Volker Gatterdam, Ralph Wieneke, Robert Tampé, and Ulrich Rant
Nature Nanotechnology, March 11, 2012. DOI: 10.1038/NNANO.2012.24

Kontakt:
Dr. Ulrich Rant
Walter Schottky Institut
Technische Universität München
Am Coulombwall 3
85748 Garching
Tel.: +49 (0)89 289 11578
E-Mail: ulrich.rant@wsi.tum.de
Web: http://www.wsi.tum.de/Research/AbstreitergroupE24/ResearchAreas
/BioNanostructures/tabid/136/Default.aspx

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften