Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Vergleich: Bewegungssehen von Fliegen und Mäusen erstaunlich ähnlich

29.07.2015

Auf den ersten Blick haben die Augen von Säugetieren und Insekten nicht allzu viel gemein. Ein Vergleich der neuronalen Schaltpläne zum Erkennen von Bewegungen zeigt jedoch erstaunliche Parallelen zwischen Fliegen und Mäusen. In beiden Arten gab es in den letzten Jahren große Fortschritte in der Erforschung der visuellen Wahrnehmung. Alexander Borst vom Max-Planck-Institut für Neurobiologie in Martinsried und Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt, die beide viel zum aktuellen Wissensstand in Fliegen und Mäusen beigetragen haben, zeigen nun die Parallelen auf.

Das Auge einer Fliege besteht aus über tausend Einzelfacetten und kann einen Großteil der Kopfoberfläche bedecken. Damit haben Fliegen sozusagen einen Panoramablick. Menschliche Augen sind im Vergleich eher klein, dafür aber beweglich.


Die neuronalen Schaltplänen zum Erkennen von Bewegungen sind im Fliegen- und Mausgehirn erstaunlich ähnlich.

MPI für Neurobiologie / Schorner

Farben sehen beide, jedoch unterscheiden sich die Farbspektren. Auch kann das Fliegenhirn über 80 Bilder pro Sekunde getrennt voneinander wahrnehmen, während wir schon bei 24 Bildern pro Sekunde an unsere Grenze kommen. Die Insekten sehen somit schnelle Bewegungen viel besser und präziser als wir Menschen.

Trotz all dieser Unterschiede ist das "Sehen" für Fliegen und Menschen ein essentieller Sinn – und ihre Augen stehen vor einem ähnlichen Problem: Einzelnen Fotorezeptoren "sehen" nur einzelne Pixel des Gesamtbildes. Formen, Distanzen oder Bewegungen müssen daher aus diesen Einzelinformationen vom Gehirn errechnet werden. Nur wie?

Alexander Borst und Moritz Helmstaedter konnten nun in ihrem Vergleich zwischen den Sehsystemen von Fliege und Maus zeigen, dass es für diese Berechnungen anscheinend ein paar sehr effiziente Grundregeln gibt. "Insekten und Säugetiere trennen rund 550 Millionen Jahre Entwicklung und doch gibt es erstaunliche Parallelen darin, wie ihr Gehirn visuelle Bewegungsinformationen verarbeitet", erklärt Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen im Fliegenhirn entschlüsselt.

"Es sieht so aus, als hätten wir hier eine sehr robuste Lösung für die neuronale Berechnung von Bewegungsrichtungen", ergänzt sein Kollege Moritz Helmstaedter, der am Max-Planck-Institut für Hirnforschung die neuronalen Schaltpläne im Gehirn von Mäusen untersucht. In ihrem Artikel in der Fachzeitschrift Nature Neuroscience haben die beiden Forscher die System-Parallelen nun herausgearbeitet.

Trennen, verarbeiten und zusammenführen

Fotorezeptoren reagieren auf Kontraständerungen – sie erhöhen oder vermindern ihre Aktivität je nachdem, ob ein zuvor heller Punkt dunkel, oder ein dunkler Punkt hell wird. Alexander Borst und sein Team haben vor einigen Jahren im Fliegenauge gezeigt, dass Fotorezeptoren ihre Informationen an zwei Gruppen von Zellen weitergeben: Die eine reagiert nur bei einer Dunkel-Hell-Änderung ("Licht an"), die andere Gruppe nimmt dagegen nur Hell-Dunkel-Änderungen ("Licht aus") wahr. Eine ähnliche Auftrennung der gerichteten Kontrastveränderungen ist in Form der ON- und OFF-Bipolarzellen seit über 40 Jahren aus der Wirbeltier-Netzhaut bekannt. Diese Parallele ist jedoch nur die erste von mehreren Ähnlichkeiten.

Nach der Aufspaltung in ON- und OFF-Kanäle wird in beiden Kanälen aus den Informationen verschiedener Fotorezeptoren die Bewegungsrichtung errechnet. Nachdem die Richtung der Bewegung ermittelt ist, werden die Informationen aus ON- und OFF-Kanälen wieder zusammengeführt und repräsentieren nun vier orthogonale Richtungen: nach rechts, links, aufwärts oder abwärts.

Bewährter Schaltplan als Basis

"Hier enden dann die bisher bekannten Parallelen", resümiert Moritz Helmstaedter. Im Mäusegehirn findet die Fusion aus ON- und OFF-Kanälen noch recht früh in der Verschaltung statt. Die Bewegungsinformation stammt aus einem relativ kleinen Bereich des Sehfeldes und wird nun mit anderen Informationen verknüpft und in höhere Hirnregionen geschickt. In der Fliege hat die so errechnete Bewegungsrichtung dagegen bereits die Nervenzellen erreicht, die Einfluss auf das Verhalten haben: Die Bewegungsinformation stammt aus einem großen Bereich des Sehfeldes und die Nervenzellen können darauf aufbauend zum Beispiel eine Kurskorrektur durch die Flugmuskulatur auslösen.

Die nun gezeigten Parallelen in der Verarbeitung von Bewegungen könnten zwei Gründe haben: Der neuronale Schaltplan existierte bereits im gemeinsamen Vorgänger dieser doch sehr unterschiedlichen Tierarten. Alternativ haben sich in Wirbeltieren und Insekten die gleichen Schaltpläne unabhängig voneinander entwickelt. Welchen Ursprung die Parallelen auch haben, ihre Existenz zeigt, dass es sich hier um einen sehr robusten und bewährten Verarbeitungsweg handeln muss.

"Wir gehen davon aus, dass dieser Schaltplan die bestmögliche Berechnung von Bewegungsrichtungen durch Nervenzellen darstellt – mit so wenigen Zellen wie nötig und so energieeffizient wie möglich", fasst Alexander Borst die Ergebnisse zusammen. Eine Erkenntnis, die für die Entwicklung von künstlichen Systemen, aber auch für das Verständnis von Gehirnfunktionen eine wichtige Grundlage sein kann.

ORIGINALVERÖFFENTLICHUNG:
Alexander Borst & Moritz Helmstaedter
Common circuit design in fly and mammalian motion vision
Nature Neuroscience, August 2015

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: bost@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics