Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Vergleich: Bewegungssehen von Fliegen und Mäusen erstaunlich ähnlich

29.07.2015

Auf den ersten Blick haben die Augen von Säugetieren und Insekten nicht allzu viel gemein. Ein Vergleich der neuronalen Schaltpläne zum Erkennen von Bewegungen zeigt jedoch erstaunliche Parallelen zwischen Fliegen und Mäusen. In beiden Arten gab es in den letzten Jahren große Fortschritte in der Erforschung der visuellen Wahrnehmung. Alexander Borst vom Max-Planck-Institut für Neurobiologie in Martinsried und Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt, die beide viel zum aktuellen Wissensstand in Fliegen und Mäusen beigetragen haben, zeigen nun die Parallelen auf.

Das Auge einer Fliege besteht aus über tausend Einzelfacetten und kann einen Großteil der Kopfoberfläche bedecken. Damit haben Fliegen sozusagen einen Panoramablick. Menschliche Augen sind im Vergleich eher klein, dafür aber beweglich.


Die neuronalen Schaltplänen zum Erkennen von Bewegungen sind im Fliegen- und Mausgehirn erstaunlich ähnlich.

MPI für Neurobiologie / Schorner

Farben sehen beide, jedoch unterscheiden sich die Farbspektren. Auch kann das Fliegenhirn über 80 Bilder pro Sekunde getrennt voneinander wahrnehmen, während wir schon bei 24 Bildern pro Sekunde an unsere Grenze kommen. Die Insekten sehen somit schnelle Bewegungen viel besser und präziser als wir Menschen.

Trotz all dieser Unterschiede ist das "Sehen" für Fliegen und Menschen ein essentieller Sinn – und ihre Augen stehen vor einem ähnlichen Problem: Einzelnen Fotorezeptoren "sehen" nur einzelne Pixel des Gesamtbildes. Formen, Distanzen oder Bewegungen müssen daher aus diesen Einzelinformationen vom Gehirn errechnet werden. Nur wie?

Alexander Borst und Moritz Helmstaedter konnten nun in ihrem Vergleich zwischen den Sehsystemen von Fliege und Maus zeigen, dass es für diese Berechnungen anscheinend ein paar sehr effiziente Grundregeln gibt. "Insekten und Säugetiere trennen rund 550 Millionen Jahre Entwicklung und doch gibt es erstaunliche Parallelen darin, wie ihr Gehirn visuelle Bewegungsinformationen verarbeitet", erklärt Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie das Bewegungssehen im Fliegenhirn entschlüsselt.

"Es sieht so aus, als hätten wir hier eine sehr robuste Lösung für die neuronale Berechnung von Bewegungsrichtungen", ergänzt sein Kollege Moritz Helmstaedter, der am Max-Planck-Institut für Hirnforschung die neuronalen Schaltpläne im Gehirn von Mäusen untersucht. In ihrem Artikel in der Fachzeitschrift Nature Neuroscience haben die beiden Forscher die System-Parallelen nun herausgearbeitet.

Trennen, verarbeiten und zusammenführen

Fotorezeptoren reagieren auf Kontraständerungen – sie erhöhen oder vermindern ihre Aktivität je nachdem, ob ein zuvor heller Punkt dunkel, oder ein dunkler Punkt hell wird. Alexander Borst und sein Team haben vor einigen Jahren im Fliegenauge gezeigt, dass Fotorezeptoren ihre Informationen an zwei Gruppen von Zellen weitergeben: Die eine reagiert nur bei einer Dunkel-Hell-Änderung ("Licht an"), die andere Gruppe nimmt dagegen nur Hell-Dunkel-Änderungen ("Licht aus") wahr. Eine ähnliche Auftrennung der gerichteten Kontrastveränderungen ist in Form der ON- und OFF-Bipolarzellen seit über 40 Jahren aus der Wirbeltier-Netzhaut bekannt. Diese Parallele ist jedoch nur die erste von mehreren Ähnlichkeiten.

Nach der Aufspaltung in ON- und OFF-Kanäle wird in beiden Kanälen aus den Informationen verschiedener Fotorezeptoren die Bewegungsrichtung errechnet. Nachdem die Richtung der Bewegung ermittelt ist, werden die Informationen aus ON- und OFF-Kanälen wieder zusammengeführt und repräsentieren nun vier orthogonale Richtungen: nach rechts, links, aufwärts oder abwärts.

Bewährter Schaltplan als Basis

"Hier enden dann die bisher bekannten Parallelen", resümiert Moritz Helmstaedter. Im Mäusegehirn findet die Fusion aus ON- und OFF-Kanälen noch recht früh in der Verschaltung statt. Die Bewegungsinformation stammt aus einem relativ kleinen Bereich des Sehfeldes und wird nun mit anderen Informationen verknüpft und in höhere Hirnregionen geschickt. In der Fliege hat die so errechnete Bewegungsrichtung dagegen bereits die Nervenzellen erreicht, die Einfluss auf das Verhalten haben: Die Bewegungsinformation stammt aus einem großen Bereich des Sehfeldes und die Nervenzellen können darauf aufbauend zum Beispiel eine Kurskorrektur durch die Flugmuskulatur auslösen.

Die nun gezeigten Parallelen in der Verarbeitung von Bewegungen könnten zwei Gründe haben: Der neuronale Schaltplan existierte bereits im gemeinsamen Vorgänger dieser doch sehr unterschiedlichen Tierarten. Alternativ haben sich in Wirbeltieren und Insekten die gleichen Schaltpläne unabhängig voneinander entwickelt. Welchen Ursprung die Parallelen auch haben, ihre Existenz zeigt, dass es sich hier um einen sehr robusten und bewährten Verarbeitungsweg handeln muss.

"Wir gehen davon aus, dass dieser Schaltplan die bestmögliche Berechnung von Bewegungsrichtungen durch Nervenzellen darstellt – mit so wenigen Zellen wie nötig und so energieeffizient wie möglich", fasst Alexander Borst die Ergebnisse zusammen. Eine Erkenntnis, die für die Entwicklung von künstlichen Systemen, aber auch für das Verständnis von Gehirnfunktionen eine wichtige Grundlage sein kann.

ORIGINALVERÖFFENTLICHUNG:
Alexander Borst & Moritz Helmstaedter
Common circuit design in fly and mammalian motion vision
Nature Neuroscience, August 2015

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 3251
Email: bost@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des Max-Planck-Instituts für Neurobiologie

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nerven steuern die Bakterienbesiedlung des Körpers
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Mit künstlicher Intelligenz zum chemischen Fingerabdruck
26.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie