Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Körper ticken die Uhren anders: Neue Erkenntnisse zur Alterung von Gehirn- und Leberzellen

18.09.2015

Wie alt Zellen sind, lässt sich nicht einfach anhand des Lebensalters bestimmen. Alessandro Ori, Neuzugang am Leibniz-Institut für Altersforschung in Jena, hat zusammen mit Forschern des Europäischen Laboratoriums für Molekularbiologie Heidelberg (EMBL) sowie des Salk Institute und der University of California (USA) nun den Alternsprozess von Leber- und Gehirnzellen in Ratten vermessen. Die Studie in der renommierten Zeitschrift Cell Systems zeigt Unterschiede zwischen den Organen, aber auch Gemeinsamkeiten, was auf generelle sowie organspezifische Alternsprozesse schließen lässt.

Altern scheint ein Phänomen zu sein, dass sich anhand der Anzahl der Jahre, Monate oder Tage seit der Geburt einfach bestimmen lässt. Aber die Zeitrechnung für Zellen innerhalb des Körpers ist anders. Ein internationales Team aus Wissenschaftlern um Alessandro Ori, seit September Forschungsgruppenleiter am Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena, hat nun Leber- und Gehirnzellen jugendlicher Ratten (6 Monate) mit alten Ratten (24 Monate) verglichen.


Ein proteomischer und genomischer Mehrmethodenansatz bringt neue Erkenntnisse zu Gemeinsamkeiten und Unterschieden bei der Alterung von Leber- und Gehirnzellen bei Ratten

(Quelle: Salk Institute/Brandon Toyama)

„Neuartig an der Studie ist, dass wir uns nicht wie die meisten Vorgängerstudien nur mit der Genexpression beschäftigt, sondern mehrere Methoden miteinander kombiniert haben“, erläutert Ori die Besonderheit des Forschungsansatzes. Gemessen wurde, welche Teile des Genoms transkribiert (also „ausgelesen“) wurden, welche und wie viele Proteine die Zellen daraufhin produziert haben und welche chemischen Marker den Proteinen danach zugewiesen wurden. „Dieser Mehrmethodenansatz hat sich als besonders effektiv herausgestellt, weil wir auf diese Weise sehen konnten, wir der Alternsprozess ganze Netzwerke von Reaktionen hervorruft“, erklärt Ori weiter.

Es gibt beispielsweise Reaktionen, die sowohl in Leber- als auch in Gehirnzellen vorkommen: Immun- und Entzündungsreaktionen ebenso wie Stressantworten. Da die beiden Organe sich in Funktionalität, Regenerationsfähigkeit und Aufbau sehr stark unterscheiden, kann davon ausgegangen werden, dass es sich hierbei möglicherweise um generelle Prozesse handelt, die im gesamten Körper das Altern von Zellen beeinflussen.

Gleichzeitig gibt es klare Unterschiede zwischen den Organen. In der Leber waren bei alten Ratten Veränderungen des Stoffwechsels zu beobachten, die insbesondere den Umgang von Zellen mit Molekülen betrafen und das „Auslesen“ des Genoms beeinflussen. Im Gehirn wiederum zeigten sich die stärksten Alternseffekte bei der Proteinproduktion, die die Signalprozesse zwischen den Neuronen und ihre Kommunikation untereinander beeinflussen.

„Wir konnten zeigen, dass alternsbedingte Veränderungen oft mit einem Verlust von Molekülen einhergehen, die für die Signalweiterleitung zwischen Neuronen wichtig sind. Dies könnte erklären, warum bei alten Ratten die Fähigkeit abnimmt, neue neuronale Verbindungen herzustellen“, erklärt Martin Beck, der zusammen mit Alessandro Ori die Arbeiten am EMBL geleitet hat. Dies könnte auch beim Menschen für die verminderte Bildung neuronaler Verbindungen im Alter und die damit verbundene Reduktion der Gehirnleistung von Bedeutung sein.

„Die Erkenntnis, dass organspezifische Unterschiede das Altern beeinflussen, ist besonders interessant“, betont Lenhard Rudolph, Wissenschaftlicher Direktor des FLI. „Wir wissen heute nur wenig über die organspezifischen Ursachen des Alterns. Die Studie von Alessandro Ori liefert hier grundlegende Erkenntnisse, die eine neue Basis darstellen für unser Ziel, die Funktion von Organen im Alter zu verbessern.“

Publikation
Ori et al., Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats, Cell Systems (2015), http://dx.doi.org/10.1016/j.cels.2015.08.012.

Kontakt
Dr. Evelyn Kästner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI), Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656373, Fax: 03641-656351, E-Mail: presse@fli-leibniz.de


Hintergrundinformation

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena widmet sich seit 2004 der biomedizinischen Alternsforschung. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Die Leibniz-Gemeinschaft verbindet 89 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen, u.a. in Form der WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.100 Personen, darunter 9.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,64 Milliarden Euro. Näheres unter http://www.leibniz-gemeinschaft.de.

Das Europäische Laboratorium für Molekularbiologie (EMBL) ist Europas führendes Grundlagenforschungsinstitut in den Lebenswissenschaften, das sich über öffentliche Forschungsgelder seiner Mitgliedsstaaten finanziert. Mehr als 80 unabhängige internationale Forschungsgruppen arbeiten hier interdisziplinär zu Themen des gesamten Spektrums der Molekularbiologie. Die 1600 Mitarbeiter des Instituts arbeiten an fünf Standorten: das Hauptlaboratorium in Heidelberg sowie Außenstellen in Hinxton bei Cambridge (Europäisches Bioinformatik-Institut), Grenoble, Hamburg und Monterotondo bei Rom. Die Kernaufgaben des 1974 als zwischenstaatliche Organisation gegründeten Instituts sind: molekularbiologische Grundlagenforschung; Ausbildung von Studenten, Wissenschaftlern und Gastwissenschaftlern; Serviceleistungen für Wissenschaftler in den Mitgliedstaaten; Entwicklung neuer Instrumente und Methoden für die Forschung sowie aktiver Technologietransfer und die Vernetzung der Biowissenschaften in Europa. Im internationalen Doktorandenprogramm des EMBL forschen rund 230 Studenten. Darüber hinaus fördert das Institut den Austausch mit der Öffentlichkeit durch Vortragsreihen, Besucherprogramme und aktive Wissenschaftskommunikation.

Weitere Informationen:

http://www.fli-leibniz.de - Homepage Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zirkuläre RNA wird in Proteine übersetzt
24.03.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen
24.03.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise