Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Körper ticken die Uhren anders: Neue Erkenntnisse zur Alterung von Gehirn- und Leberzellen

18.09.2015

Wie alt Zellen sind, lässt sich nicht einfach anhand des Lebensalters bestimmen. Alessandro Ori, Neuzugang am Leibniz-Institut für Altersforschung in Jena, hat zusammen mit Forschern des Europäischen Laboratoriums für Molekularbiologie Heidelberg (EMBL) sowie des Salk Institute und der University of California (USA) nun den Alternsprozess von Leber- und Gehirnzellen in Ratten vermessen. Die Studie in der renommierten Zeitschrift Cell Systems zeigt Unterschiede zwischen den Organen, aber auch Gemeinsamkeiten, was auf generelle sowie organspezifische Alternsprozesse schließen lässt.

Altern scheint ein Phänomen zu sein, dass sich anhand der Anzahl der Jahre, Monate oder Tage seit der Geburt einfach bestimmen lässt. Aber die Zeitrechnung für Zellen innerhalb des Körpers ist anders. Ein internationales Team aus Wissenschaftlern um Alessandro Ori, seit September Forschungsgruppenleiter am Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena, hat nun Leber- und Gehirnzellen jugendlicher Ratten (6 Monate) mit alten Ratten (24 Monate) verglichen.


Ein proteomischer und genomischer Mehrmethodenansatz bringt neue Erkenntnisse zu Gemeinsamkeiten und Unterschieden bei der Alterung von Leber- und Gehirnzellen bei Ratten

(Quelle: Salk Institute/Brandon Toyama)

„Neuartig an der Studie ist, dass wir uns nicht wie die meisten Vorgängerstudien nur mit der Genexpression beschäftigt, sondern mehrere Methoden miteinander kombiniert haben“, erläutert Ori die Besonderheit des Forschungsansatzes. Gemessen wurde, welche Teile des Genoms transkribiert (also „ausgelesen“) wurden, welche und wie viele Proteine die Zellen daraufhin produziert haben und welche chemischen Marker den Proteinen danach zugewiesen wurden. „Dieser Mehrmethodenansatz hat sich als besonders effektiv herausgestellt, weil wir auf diese Weise sehen konnten, wir der Alternsprozess ganze Netzwerke von Reaktionen hervorruft“, erklärt Ori weiter.

Es gibt beispielsweise Reaktionen, die sowohl in Leber- als auch in Gehirnzellen vorkommen: Immun- und Entzündungsreaktionen ebenso wie Stressantworten. Da die beiden Organe sich in Funktionalität, Regenerationsfähigkeit und Aufbau sehr stark unterscheiden, kann davon ausgegangen werden, dass es sich hierbei möglicherweise um generelle Prozesse handelt, die im gesamten Körper das Altern von Zellen beeinflussen.

Gleichzeitig gibt es klare Unterschiede zwischen den Organen. In der Leber waren bei alten Ratten Veränderungen des Stoffwechsels zu beobachten, die insbesondere den Umgang von Zellen mit Molekülen betrafen und das „Auslesen“ des Genoms beeinflussen. Im Gehirn wiederum zeigten sich die stärksten Alternseffekte bei der Proteinproduktion, die die Signalprozesse zwischen den Neuronen und ihre Kommunikation untereinander beeinflussen.

„Wir konnten zeigen, dass alternsbedingte Veränderungen oft mit einem Verlust von Molekülen einhergehen, die für die Signalweiterleitung zwischen Neuronen wichtig sind. Dies könnte erklären, warum bei alten Ratten die Fähigkeit abnimmt, neue neuronale Verbindungen herzustellen“, erklärt Martin Beck, der zusammen mit Alessandro Ori die Arbeiten am EMBL geleitet hat. Dies könnte auch beim Menschen für die verminderte Bildung neuronaler Verbindungen im Alter und die damit verbundene Reduktion der Gehirnleistung von Bedeutung sein.

„Die Erkenntnis, dass organspezifische Unterschiede das Altern beeinflussen, ist besonders interessant“, betont Lenhard Rudolph, Wissenschaftlicher Direktor des FLI. „Wir wissen heute nur wenig über die organspezifischen Ursachen des Alterns. Die Studie von Alessandro Ori liefert hier grundlegende Erkenntnisse, die eine neue Basis darstellen für unser Ziel, die Funktion von Organen im Alter zu verbessern.“

Publikation
Ori et al., Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats, Cell Systems (2015), http://dx.doi.org/10.1016/j.cels.2015.08.012.

Kontakt
Dr. Evelyn Kästner
Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI), Beutenbergstr. 11, 07745 Jena
Tel.: 03641-656373, Fax: 03641-656351, E-Mail: presse@fli-leibniz.de


Hintergrundinformation

Das Leibniz-Institut für Altersforschung – Fritz-Lipmann-Institut (FLI) in Jena widmet sich seit 2004 der biomedizinischen Alternsforschung. Über 330 Mitarbeiter aus 30 Nationen forschen zu molekularen Mechanismen von Alternsprozessen und alternsbedingten Krankheiten. Näheres unter http://www.fli-leibniz.de.

Die Leibniz-Gemeinschaft verbindet 89 selbständige Forschungseinrichtungen. Deren Ausrichtung reicht von den Natur-, Ingenieur- und Umweltwissenschaften über die Wirtschafts-, Raum- und Sozialwissenschaften bis zu den Geisteswissenschaften. Leibniz-Institute bearbeiten gesellschaftlich, ökonomisch und ökologisch relevante Fragestellungen. Sie betreiben erkenntnis- und anwendungsorientierte Grundlagenforschung. Sie unterhalten wissenschaftliche Infrastrukturen und bieten forschungsbasierte Dienstleistungen an. Die Leibniz-Gemeinschaft setzt Schwerpunkte im Wissenstransfer in Richtung Politik, Wissenschaft, Wirtschaft und Öffentlichkeit. Leibniz-Institute pflegen intensive Kooperationen mit den Hochschulen, u.a. in Form der WissenschaftsCampi, mit der Industrie und anderen Partnern im In- und Ausland. Sie unterliegen einem maßstabsetzenden transparenten und unabhängigen Begutachtungsverfahren. Aufgrund ihrer gesamtstaatlichen Bedeutung fördern Bund und Länder die Institute der Leibniz-Gemeinschaft gemeinsam. Die Leibniz-Institute beschäftigen rund 18.100 Personen, darunter 9.200 Wissenschaftlerinnen und Wissenschaftler. Der Gesamtetat der Institute liegt bei 1,64 Milliarden Euro. Näheres unter http://www.leibniz-gemeinschaft.de.

Das Europäische Laboratorium für Molekularbiologie (EMBL) ist Europas führendes Grundlagenforschungsinstitut in den Lebenswissenschaften, das sich über öffentliche Forschungsgelder seiner Mitgliedsstaaten finanziert. Mehr als 80 unabhängige internationale Forschungsgruppen arbeiten hier interdisziplinär zu Themen des gesamten Spektrums der Molekularbiologie. Die 1600 Mitarbeiter des Instituts arbeiten an fünf Standorten: das Hauptlaboratorium in Heidelberg sowie Außenstellen in Hinxton bei Cambridge (Europäisches Bioinformatik-Institut), Grenoble, Hamburg und Monterotondo bei Rom. Die Kernaufgaben des 1974 als zwischenstaatliche Organisation gegründeten Instituts sind: molekularbiologische Grundlagenforschung; Ausbildung von Studenten, Wissenschaftlern und Gastwissenschaftlern; Serviceleistungen für Wissenschaftler in den Mitgliedstaaten; Entwicklung neuer Instrumente und Methoden für die Forschung sowie aktiver Technologietransfer und die Vernetzung der Biowissenschaften in Europa. Im internationalen Doktorandenprogramm des EMBL forschen rund 230 Studenten. Darüber hinaus fördert das Institut den Austausch mit der Öffentlichkeit durch Vortragsreihen, Besucherprogramme und aktive Wissenschaftskommunikation.

Weitere Informationen:

http://www.fli-leibniz.de - Homepage Leibniz-Institut für Altersforschung - Fritz-Lipmann-Institut (FLI) Jena

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Salmonellen als Medikament gegen Tumore
23.10.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Add-ons: Was Computerprogramme und Proteine gemeinsam haben
23.10.2017 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie