Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hummelgenom entschlüsselt

27.04.2015

Eine Kollaboration von Forschenden unter ETH-Federführung hat das Genom von zwei kommerziell bedeutenden Hummelarten aufgeklärt. Die Resultate bieten unerwartete Einblicke in Ökologie und Evolution der Hummeln und auch der Honigbiene.

Hummeln gelten als friedfertig und fleissig. Nicht zuletzt seit es weltweit mit der Honigbiene bergab geht, ist der kommerzielle Wert dieser Insekten gestiegen. So werden sie heute im grossen Stil gezüchtet und als Bestäuberinnen von Nutz- und Kulturpflanzen eingesetzt.


Das Genom der europäischen Erdhummel Bombus terrestris wurde vollständig entschlüsselt. Es enthält ein nur relativ kleines Repertoire an Immungenen.

Dave Young, flickr.com, Creative Commons, Namensnennung (CC BY 2.0)

Doch auch um die putzigen Brummer, von denen es weltweit 250 verschiedene Arten gibt, steht es mancherorts schlecht. Der grosse Schatten, den das Bienensterben warf, verdeckte die Tatsache, dass in den USA und auch anderswo einige häufige Hummelarten in den vergangenen Jahren ebenfalls selten geworden sind oder aus ganzen Landstrichen komplett verschwanden.

Nicht zuletzt deshalb initiierten die beiden ehemaligen ETH-Forscher Seth Barribeau und Ben Sadd, zusammen mit Professor Paul Schmid-Hempel aus der Gruppe für Experimentelle Ökologie vor acht Jahren ein Hummel-Genom-Projekt.

Es hatte zum Ziel, das Erbgut von zwei kommerziell bedeutenden Hummelarten, der europäischen Erdhummel, Bombus terrestris, und der amerikanischen Bombus impatiens, zu entschlüsseln. Die Genomdaten, so hofften die Forschenden, sollten Aufschluss geben über Biologie, Ökologie und Evolution der Hummeln.

Immungene analysiert

Ein besonderes Augenmerk richteten Barribeau, Sadd und 80 weitere Forschende aus der ganzen Welt auf die Gene, die zum Immunsystem gehören. An der Arbeit beteiligten sich Evolutionsbiologen, Ökologinnen, Bioinformatiker und Genetikerinnen.

Zudem verglichen die Forschenden bereits entschlüsselte Genome anderer Insekten, wie der Honigbiene, einer Erzwespe und der Essigfliege Drosophila melanogaster, mit denen der beiden Hummeln. Die Resultate ihrer Studien veröffentlichten die Wissenschaftler soeben in der Fachzeitschrift «Genome Biology».

Die Genome der beiden Hummeln gleichen einander stark und enthalten rund 20‘000 verschiedene Gene auf 18 Chromosomen. Davon entfällt nur ein geringer Anteil auf Gene, die in die Immunantwort involviert sind, wie die Wissenschaftler herausfanden: Das Genrepertoire für das Immunsystem umfasst bei beiden Hummelarten nur rund 150 Gene. Das sind verglichen mit Fliegen oder Mücken ziemlich wenige: Drosophila hat doppelt so viele. Allerdings haben auch die Honigbiene und die Erzwespe Nasonia nur ein kleines Immun-Gen-Repertoire.

Sozialorganisation spielt k(l)eine Rolle

Weshalb die sozial verhältnismässig schwach organisierten Hummeln ebenso wenige Immun-Gene haben wie die Honigbienen mit ihrer hohen sozialen Organisation, ist für Paul Schmid-Hempel rätselhaft. Bisher sei die Forschung davon ausgegangen, dass sich Insekten mit hoher sozialer Organisation ein schwächeres Immunsystem leisten können, sagt er. Umgekehrt würde ein simples Sozialsystem stärkere körpereigene Abwehr erfordern. Die bisherige Theorie nahm also an, dass hochsoziale Insekten andere Möglichkeiten zur Abwehr von Keimen haben als die Immunabwehr, etwa die gegenseitige Körperpflege bei Bienen.

Schmid-Hempel kann sich vorstellen, dass dieses schwache Immunsystem der Bienen und Hummeln mit ihrer Nahrung zusammenhängen könnte: Während Fliegen wie die Essigfliege Drosophila melanogaster Nahrung auf mit Bakterien und Pilzen verunreinigten Oberflächen wie verfaulten Früchten aufnehmen, können Bienen diesbezüglich saubere Nahrungsquellen, die Blüten von Pflanzen, anfliegen. Das dürfte das Infektionsrisiko und damit den Selektionsdruck für ein gut ausgebautes Immunsystem beträchtlich senken.

Doch nicht nur das schwache Immunsystem dürfte Hummeln (und Honigbienen) in der heutigen Zeit das Leben schwer machen: Die Forscher konnten auch nur wenige Gene identifizieren, die die Entgiftung des Körpers regeln. Dies könnte laut Schmid-Hempel dafür sprechen, dass diese Insekten auf Umweltgifte wie Pestizide aus der Landwirtschaft sensibel reagieren.

Genunterschiede machen Ökologie sichtbar

Die Genomanalysen zeigen aber auch deutliche Unterschiede zwischen Bienen und Hummeln. So haben Hummeln mehr Gene, die der Geschmacksbildung dienen, Bienen mehr solche, die zum Geruchssinn beitragen.

Dies macht Sinn: Hummeln vertrauen bei der Nahrungssuche auf ihren Geschmack, testen quasi jede Blüte, die sie anfliegen, mit ihrer Zunge. Honigbienen vertrauen hingegen auf ihren Geruchssinn, um die richtige Nahrung zu finden. Auch beim Schwänzeltanz, mit dem eine Biene ihren Artgenossinnen gute Nahrungsquellen mitteilt, spielt der Geruchssinn die tragende Rolle. «In den Genen lässt sich dieser fundamentale Unterschied in der Lebensweise der beiden Organismen deutlich erkennen», so Schmid-Hempel.

Keine «Sozialgene»

Zu ihrer Überraschung konnten die Forscher der sozialen Organisation und dem Sozialverhalten vergleichsweise wenige spezifischen Gene zuordnen. «Die Gene dafür sind bei Hummeln und Bienen nicht sehr verschieden», so Schmid-Hempel. Dafür entdeckten die Wissenschaftler bei diesen Insekten komplett verschiedene Sätze von sogenannten Mikro-RNAs, also winzigen Schnipseln von Ribonukleinsäuren. Diese miRNAs regulieren Gene, indem sie Gen-Abschriften, die in den Zellen als Bauplan von Proteinen dienen, blockieren. Erst diese Art der Gen-Regulation macht aus einem «normalen» wenig sozialen Insekt wie der Hummel ein hochsoziales Wesen wie die Honigbiene.

Literaturhinweise

Sadd, B, Barribeau, SM, Bloch, G, Graaf, D, Dearden, P, Elsik, C, et. al The genomes of two key bumblebee species with primitive eusocial organization. Genome Biology. (in press)

Barribeau SM, et al. A depauperate immune repertoire precedes evolution of sociality in bees. 2015, 16: 83, published online 24th April 2015, DOI: 10.1186/s13059-015-0628-y

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/04/hummelgeno...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Verbesserte Kohlendioxid-Fixierung dank Mikrokompartiment
25.09.2017 | Max-Planck-Institut für Biochemie

nachricht Regenbogenfarben enthüllen Werdegang von Zellen
25.09.2017 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Legionellen? Nein danke!

25.09.2017 | Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops