Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hüpfende Protonen

14.04.2011
Dr. Burkhard Schmidt simuliert im MATHEON den Protonentransfer in Aminosäuren und kleinen Peptiden. Der Protonentransfer spielt eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, die für den Energiefluss in Batterien interessant sind, aber auch bei der Entwicklung neuer Medikamente.

Wie kann man das Verhalten von Protonen und Aminosäuren im Computer simulieren, wie kann man Experimente darstellen, bei denen sich das Verhalten bei mehr oder weniger Zufuhr von Wasser untersuchen lässt? Die Antwort auf diese Frage scheint im Zeitalter von Hochleistungsrechnern banal. In der Realität aber zeigt sich, dass diese Aufgabe ohne neue mathematische Algorithmen bis heute fast nicht lösbar ist. Zu schnell, zu „unberechenbar“ verhalten sich diese Protonen.


Schnappschuss einer Initio Molecular Simulation
© Schmidt

Im Projekt „Modellierung und Optimierung funktionaler Moleküle“ des DFG-Forschungszentrum MATHEON arbeitet Dr. Burkhard Schmidt unter Leitung von Prof. Christof Schütte an diesem Problem. Er untersucht in der Computersimulation die Rolle des Wassers als Lösungsmittel, wenn es schrittweise zu Aminosäuren oder Peptiden hinzugefügt wird. Vor allem will er den Protonentransfer zwischen zwei Endgruppen - er führt zur Bildung sog. Zwitterionen - und den Protonentransfer zwischen geeigneten Seitenketten - er führt zur Bildung von sog. Salzbrücken - erforschen.

Noch sind Schmidts Arbeiten Grundlagenforschung, die Ergebnisse seiner Forschung aber haben für viele Bereiche eine große Bedeutung. So spielt der Protonentransfer eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, sie sind für den Energiefluss in Batterien interessant, aber auch bei der Entwicklung neuer Medikamente.

Ein Zwitterion ist ein Molekül mit zwei oder mehreren funktionalen Gruppen, von denen eine Gruppe positiv und eine andere negativ geladen ist. Das Molekül ist somit insgesamt elektrisch neutral. Eine Aminosäure ist ein zunächst elektrisch neutrales Molekül. Werden Aminosäuren jedoch in Wasser gelöst, beginnen die Wasser-Protonen zu hüpfen und führen zur Ausbildung eines negativ und eines positiv geladenen Endes der Säure. Dabei sind die Protonen ständig in Bewegung und gehen laufend neue Verbindungen ein. Durch das Hüpfen der Protonen entlang benachbarter Moleküle können Ladungen auch über Entfernungen auf der Nanometer-Skala in sogenannten Wasserbrücken oder ”Wasserdrähten“ transportiert werden. All das passiert in sehr schnellen Zeitskalen.

Dr. Schmidt möchte mit seinem Projekt dazu beitragen, die Mechanismen des Protonentransfers auf mikroskopischer Basis zu verstehen. Dabei beschränkt er sich auf Aminosäuren und kleine Peptidketten. Sein Vorgehen beschreibt der Forscher so: „Obwohl die weitaus meisten biologischen Prozesse in wässriger Lösung auftreten, beginnen unsere Untersuchungen bei isolierten Aminosäuren und Peptiden, um so die intra- von den intermolekularen Prozessen trennen zu können. Anschließend werden in unseren Simulationen nach und nach einzelne Wassermoleküle hinzugefügt. Damit wollen wir den Einfluss des Lösungsmittels kontrolliert untersuchen.“ Ein ehrgeiziges Vorhaben, denn solche Untersuchungen sind nur in der Computersimulation und gar nicht oder nur schwer als Experiment durchzuführen.

Dabei will der Wissenschaftler zum Beispiel klären, wie viele Wassermoleküle erforderlich sind, um Aminosäuren oder Peptide von ihrer neutralen in ihre zwitterionische Form zu überführen. Untersuchen will er auch, was mit einer Salzbrücke passiert, wenn Wassermoleküle hinzugefügt werden. „Darüber hinaus ist es interessant, diese Prozesse in ihrer Zeitabhängigkeit zu simulieren, um so auch die Zeitskalen der untersuchten Prozesse studieren zu können. Wesentliche Fragen dabei sind, wie schnell Protonen von geeigneten Seitenketten abgelöst bzw. an diese angelagert werden können oder auf welcher Zeitskala Protonen zwischen Protein und Wasser übergeben werden und wie schnell der Transport von Protonen entlang von Wasserbücken ist,“ erklärt Burkhard Schmidt.

Bei seinen Untersuchungen will Schmidt Verfahren anwenden, bei denen in jedem Zeitschritt der Simulationen die Energien bzw. Kräfte aus der Elektronenstruktur berechnet werden. Das unterscheidet seine Arbeit von „herkömmlichen“ Computersimulationen, bei denen empirische Modelle zur Berechnung von Energien und Kräften zwischen den Atomen angewandt werden. „Neben der fragwürdigen Genauigkeit und Übertragbarkeit solcher empirischer Modelle besteht die wesentliche Einschränkung darin, dass das Brechen und Bilden chemischer Bindungen so nicht beschrieben werden kann. Damit kann ich mich nicht zufrieden geben“, sagt er. Seine jetzige Forschung baut auf ein vorhergehendes Projekt auf, bei dem Dr. Schmidt die Reaktionen eines Protons und eines Elektrons in einem Wassercluster untersucht hat. (Cluster=Mikrotröpfchen)

Dank seiner mathematisch/physikalischen Methoden gelingt es Burkhard Schmidt schon jetzt, die chemischen Vorgänge auf Großrechnern einige Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunden) zu rechnen. „Das ist schon sehr viel, mein Wunsch aber wäre Nanosekunden (0,000 000 001) zu erreichen“, sagt der Wissenschaftler.

Weitere Informationen:
Dr. Burkhard Schmidt,
Tel.: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten