Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hüpfende Protonen

14.04.2011
Dr. Burkhard Schmidt simuliert im MATHEON den Protonentransfer in Aminosäuren und kleinen Peptiden. Der Protonentransfer spielt eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, die für den Energiefluss in Batterien interessant sind, aber auch bei der Entwicklung neuer Medikamente.

Wie kann man das Verhalten von Protonen und Aminosäuren im Computer simulieren, wie kann man Experimente darstellen, bei denen sich das Verhalten bei mehr oder weniger Zufuhr von Wasser untersuchen lässt? Die Antwort auf diese Frage scheint im Zeitalter von Hochleistungsrechnern banal. In der Realität aber zeigt sich, dass diese Aufgabe ohne neue mathematische Algorithmen bis heute fast nicht lösbar ist. Zu schnell, zu „unberechenbar“ verhalten sich diese Protonen.


Schnappschuss einer Initio Molecular Simulation
© Schmidt

Im Projekt „Modellierung und Optimierung funktionaler Moleküle“ des DFG-Forschungszentrum MATHEON arbeitet Dr. Burkhard Schmidt unter Leitung von Prof. Christof Schütte an diesem Problem. Er untersucht in der Computersimulation die Rolle des Wassers als Lösungsmittel, wenn es schrittweise zu Aminosäuren oder Peptiden hinzugefügt wird. Vor allem will er den Protonentransfer zwischen zwei Endgruppen - er führt zur Bildung sog. Zwitterionen - und den Protonentransfer zwischen geeigneten Seitenketten - er führt zur Bildung von sog. Salzbrücken - erforschen.

Noch sind Schmidts Arbeiten Grundlagenforschung, die Ergebnisse seiner Forschung aber haben für viele Bereiche eine große Bedeutung. So spielt der Protonentransfer eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, sie sind für den Energiefluss in Batterien interessant, aber auch bei der Entwicklung neuer Medikamente.

Ein Zwitterion ist ein Molekül mit zwei oder mehreren funktionalen Gruppen, von denen eine Gruppe positiv und eine andere negativ geladen ist. Das Molekül ist somit insgesamt elektrisch neutral. Eine Aminosäure ist ein zunächst elektrisch neutrales Molekül. Werden Aminosäuren jedoch in Wasser gelöst, beginnen die Wasser-Protonen zu hüpfen und führen zur Ausbildung eines negativ und eines positiv geladenen Endes der Säure. Dabei sind die Protonen ständig in Bewegung und gehen laufend neue Verbindungen ein. Durch das Hüpfen der Protonen entlang benachbarter Moleküle können Ladungen auch über Entfernungen auf der Nanometer-Skala in sogenannten Wasserbrücken oder ”Wasserdrähten“ transportiert werden. All das passiert in sehr schnellen Zeitskalen.

Dr. Schmidt möchte mit seinem Projekt dazu beitragen, die Mechanismen des Protonentransfers auf mikroskopischer Basis zu verstehen. Dabei beschränkt er sich auf Aminosäuren und kleine Peptidketten. Sein Vorgehen beschreibt der Forscher so: „Obwohl die weitaus meisten biologischen Prozesse in wässriger Lösung auftreten, beginnen unsere Untersuchungen bei isolierten Aminosäuren und Peptiden, um so die intra- von den intermolekularen Prozessen trennen zu können. Anschließend werden in unseren Simulationen nach und nach einzelne Wassermoleküle hinzugefügt. Damit wollen wir den Einfluss des Lösungsmittels kontrolliert untersuchen.“ Ein ehrgeiziges Vorhaben, denn solche Untersuchungen sind nur in der Computersimulation und gar nicht oder nur schwer als Experiment durchzuführen.

Dabei will der Wissenschaftler zum Beispiel klären, wie viele Wassermoleküle erforderlich sind, um Aminosäuren oder Peptide von ihrer neutralen in ihre zwitterionische Form zu überführen. Untersuchen will er auch, was mit einer Salzbrücke passiert, wenn Wassermoleküle hinzugefügt werden. „Darüber hinaus ist es interessant, diese Prozesse in ihrer Zeitabhängigkeit zu simulieren, um so auch die Zeitskalen der untersuchten Prozesse studieren zu können. Wesentliche Fragen dabei sind, wie schnell Protonen von geeigneten Seitenketten abgelöst bzw. an diese angelagert werden können oder auf welcher Zeitskala Protonen zwischen Protein und Wasser übergeben werden und wie schnell der Transport von Protonen entlang von Wasserbücken ist,“ erklärt Burkhard Schmidt.

Bei seinen Untersuchungen will Schmidt Verfahren anwenden, bei denen in jedem Zeitschritt der Simulationen die Energien bzw. Kräfte aus der Elektronenstruktur berechnet werden. Das unterscheidet seine Arbeit von „herkömmlichen“ Computersimulationen, bei denen empirische Modelle zur Berechnung von Energien und Kräften zwischen den Atomen angewandt werden. „Neben der fragwürdigen Genauigkeit und Übertragbarkeit solcher empirischer Modelle besteht die wesentliche Einschränkung darin, dass das Brechen und Bilden chemischer Bindungen so nicht beschrieben werden kann. Damit kann ich mich nicht zufrieden geben“, sagt er. Seine jetzige Forschung baut auf ein vorhergehendes Projekt auf, bei dem Dr. Schmidt die Reaktionen eines Protons und eines Elektrons in einem Wassercluster untersucht hat. (Cluster=Mikrotröpfchen)

Dank seiner mathematisch/physikalischen Methoden gelingt es Burkhard Schmidt schon jetzt, die chemischen Vorgänge auf Großrechnern einige Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunden) zu rechnen. „Das ist schon sehr viel, mein Wunsch aber wäre Nanosekunden (0,000 000 001) zu erreichen“, sagt der Wissenschaftler.

Weitere Informationen:
Dr. Burkhard Schmidt,
Tel.: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bakterieller Untermieter macht Blattnahrung für Käfer verdaulich
17.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Neues Werkzeug für gezielten Proteinabbau
17.11.2017 | Max-Planck-Institut für biophysikalische Chemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte