Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hüpfende Protonen

14.04.2011
Dr. Burkhard Schmidt simuliert im MATHEON den Protonentransfer in Aminosäuren und kleinen Peptiden. Der Protonentransfer spielt eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, die für den Energiefluss in Batterien interessant sind, aber auch bei der Entwicklung neuer Medikamente.

Wie kann man das Verhalten von Protonen und Aminosäuren im Computer simulieren, wie kann man Experimente darstellen, bei denen sich das Verhalten bei mehr oder weniger Zufuhr von Wasser untersuchen lässt? Die Antwort auf diese Frage scheint im Zeitalter von Hochleistungsrechnern banal. In der Realität aber zeigt sich, dass diese Aufgabe ohne neue mathematische Algorithmen bis heute fast nicht lösbar ist. Zu schnell, zu „unberechenbar“ verhalten sich diese Protonen.


Schnappschuss einer Initio Molecular Simulation
© Schmidt

Im Projekt „Modellierung und Optimierung funktionaler Moleküle“ des DFG-Forschungszentrum MATHEON arbeitet Dr. Burkhard Schmidt unter Leitung von Prof. Christof Schütte an diesem Problem. Er untersucht in der Computersimulation die Rolle des Wassers als Lösungsmittel, wenn es schrittweise zu Aminosäuren oder Peptiden hinzugefügt wird. Vor allem will er den Protonentransfer zwischen zwei Endgruppen - er führt zur Bildung sog. Zwitterionen - und den Protonentransfer zwischen geeigneten Seitenketten - er führt zur Bildung von sog. Salzbrücken - erforschen.

Noch sind Schmidts Arbeiten Grundlagenforschung, die Ergebnisse seiner Forschung aber haben für viele Bereiche eine große Bedeutung. So spielt der Protonentransfer eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, sie sind für den Energiefluss in Batterien interessant, aber auch bei der Entwicklung neuer Medikamente.

Ein Zwitterion ist ein Molekül mit zwei oder mehreren funktionalen Gruppen, von denen eine Gruppe positiv und eine andere negativ geladen ist. Das Molekül ist somit insgesamt elektrisch neutral. Eine Aminosäure ist ein zunächst elektrisch neutrales Molekül. Werden Aminosäuren jedoch in Wasser gelöst, beginnen die Wasser-Protonen zu hüpfen und führen zur Ausbildung eines negativ und eines positiv geladenen Endes der Säure. Dabei sind die Protonen ständig in Bewegung und gehen laufend neue Verbindungen ein. Durch das Hüpfen der Protonen entlang benachbarter Moleküle können Ladungen auch über Entfernungen auf der Nanometer-Skala in sogenannten Wasserbrücken oder ”Wasserdrähten“ transportiert werden. All das passiert in sehr schnellen Zeitskalen.

Dr. Schmidt möchte mit seinem Projekt dazu beitragen, die Mechanismen des Protonentransfers auf mikroskopischer Basis zu verstehen. Dabei beschränkt er sich auf Aminosäuren und kleine Peptidketten. Sein Vorgehen beschreibt der Forscher so: „Obwohl die weitaus meisten biologischen Prozesse in wässriger Lösung auftreten, beginnen unsere Untersuchungen bei isolierten Aminosäuren und Peptiden, um so die intra- von den intermolekularen Prozessen trennen zu können. Anschließend werden in unseren Simulationen nach und nach einzelne Wassermoleküle hinzugefügt. Damit wollen wir den Einfluss des Lösungsmittels kontrolliert untersuchen.“ Ein ehrgeiziges Vorhaben, denn solche Untersuchungen sind nur in der Computersimulation und gar nicht oder nur schwer als Experiment durchzuführen.

Dabei will der Wissenschaftler zum Beispiel klären, wie viele Wassermoleküle erforderlich sind, um Aminosäuren oder Peptide von ihrer neutralen in ihre zwitterionische Form zu überführen. Untersuchen will er auch, was mit einer Salzbrücke passiert, wenn Wassermoleküle hinzugefügt werden. „Darüber hinaus ist es interessant, diese Prozesse in ihrer Zeitabhängigkeit zu simulieren, um so auch die Zeitskalen der untersuchten Prozesse studieren zu können. Wesentliche Fragen dabei sind, wie schnell Protonen von geeigneten Seitenketten abgelöst bzw. an diese angelagert werden können oder auf welcher Zeitskala Protonen zwischen Protein und Wasser übergeben werden und wie schnell der Transport von Protonen entlang von Wasserbücken ist,“ erklärt Burkhard Schmidt.

Bei seinen Untersuchungen will Schmidt Verfahren anwenden, bei denen in jedem Zeitschritt der Simulationen die Energien bzw. Kräfte aus der Elektronenstruktur berechnet werden. Das unterscheidet seine Arbeit von „herkömmlichen“ Computersimulationen, bei denen empirische Modelle zur Berechnung von Energien und Kräften zwischen den Atomen angewandt werden. „Neben der fragwürdigen Genauigkeit und Übertragbarkeit solcher empirischer Modelle besteht die wesentliche Einschränkung darin, dass das Brechen und Bilden chemischer Bindungen so nicht beschrieben werden kann. Damit kann ich mich nicht zufrieden geben“, sagt er. Seine jetzige Forschung baut auf ein vorhergehendes Projekt auf, bei dem Dr. Schmidt die Reaktionen eines Protons und eines Elektrons in einem Wassercluster untersucht hat. (Cluster=Mikrotröpfchen)

Dank seiner mathematisch/physikalischen Methoden gelingt es Burkhard Schmidt schon jetzt, die chemischen Vorgänge auf Großrechnern einige Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunden) zu rechnen. „Das ist schon sehr viel, mein Wunsch aber wäre Nanosekunden (0,000 000 001) zu erreichen“, sagt der Wissenschaftler.

Weitere Informationen:
Dr. Burkhard Schmidt,
Tel.: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der erste Blick auf ein einzelnes Protein
18.01.2017 | Max-Planck-Institut für Festkörperforschung, Stuttgart

nachricht Unterschiedliche Rekombinationsraten halten besonders egoistische Gene im Zaum
18.01.2017 | Max-Planck-Institut für Evolutionsbiologie, Plön

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der erste Blick auf ein einzelnes Protein

18.01.2017 | Biowissenschaften Chemie

Das menschliche Hirn wächst länger und funktionsspezifischer als gedacht

18.01.2017 | Biowissenschaften Chemie

Zur Sicherheit: Rettungsautos unterbrechen Radio

18.01.2017 | Verkehr Logistik