Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hüpfende Protonen

14.04.2011
Dr. Burkhard Schmidt simuliert im MATHEON den Protonentransfer in Aminosäuren und kleinen Peptiden. Der Protonentransfer spielt eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, die für den Energiefluss in Batterien interessant sind, aber auch bei der Entwicklung neuer Medikamente.

Wie kann man das Verhalten von Protonen und Aminosäuren im Computer simulieren, wie kann man Experimente darstellen, bei denen sich das Verhalten bei mehr oder weniger Zufuhr von Wasser untersuchen lässt? Die Antwort auf diese Frage scheint im Zeitalter von Hochleistungsrechnern banal. In der Realität aber zeigt sich, dass diese Aufgabe ohne neue mathematische Algorithmen bis heute fast nicht lösbar ist. Zu schnell, zu „unberechenbar“ verhalten sich diese Protonen.


Schnappschuss einer Initio Molecular Simulation
© Schmidt

Im Projekt „Modellierung und Optimierung funktionaler Moleküle“ des DFG-Forschungszentrum MATHEON arbeitet Dr. Burkhard Schmidt unter Leitung von Prof. Christof Schütte an diesem Problem. Er untersucht in der Computersimulation die Rolle des Wassers als Lösungsmittel, wenn es schrittweise zu Aminosäuren oder Peptiden hinzugefügt wird. Vor allem will er den Protonentransfer zwischen zwei Endgruppen - er führt zur Bildung sog. Zwitterionen - und den Protonentransfer zwischen geeigneten Seitenketten - er führt zur Bildung von sog. Salzbrücken - erforschen.

Noch sind Schmidts Arbeiten Grundlagenforschung, die Ergebnisse seiner Forschung aber haben für viele Bereiche eine große Bedeutung. So spielt der Protonentransfer eine Rolle bei der Konversion von Sonnenenergie oder der Energieumwandlung in Brennstoffzellen, sie sind für den Energiefluss in Batterien interessant, aber auch bei der Entwicklung neuer Medikamente.

Ein Zwitterion ist ein Molekül mit zwei oder mehreren funktionalen Gruppen, von denen eine Gruppe positiv und eine andere negativ geladen ist. Das Molekül ist somit insgesamt elektrisch neutral. Eine Aminosäure ist ein zunächst elektrisch neutrales Molekül. Werden Aminosäuren jedoch in Wasser gelöst, beginnen die Wasser-Protonen zu hüpfen und führen zur Ausbildung eines negativ und eines positiv geladenen Endes der Säure. Dabei sind die Protonen ständig in Bewegung und gehen laufend neue Verbindungen ein. Durch das Hüpfen der Protonen entlang benachbarter Moleküle können Ladungen auch über Entfernungen auf der Nanometer-Skala in sogenannten Wasserbrücken oder ”Wasserdrähten“ transportiert werden. All das passiert in sehr schnellen Zeitskalen.

Dr. Schmidt möchte mit seinem Projekt dazu beitragen, die Mechanismen des Protonentransfers auf mikroskopischer Basis zu verstehen. Dabei beschränkt er sich auf Aminosäuren und kleine Peptidketten. Sein Vorgehen beschreibt der Forscher so: „Obwohl die weitaus meisten biologischen Prozesse in wässriger Lösung auftreten, beginnen unsere Untersuchungen bei isolierten Aminosäuren und Peptiden, um so die intra- von den intermolekularen Prozessen trennen zu können. Anschließend werden in unseren Simulationen nach und nach einzelne Wassermoleküle hinzugefügt. Damit wollen wir den Einfluss des Lösungsmittels kontrolliert untersuchen.“ Ein ehrgeiziges Vorhaben, denn solche Untersuchungen sind nur in der Computersimulation und gar nicht oder nur schwer als Experiment durchzuführen.

Dabei will der Wissenschaftler zum Beispiel klären, wie viele Wassermoleküle erforderlich sind, um Aminosäuren oder Peptide von ihrer neutralen in ihre zwitterionische Form zu überführen. Untersuchen will er auch, was mit einer Salzbrücke passiert, wenn Wassermoleküle hinzugefügt werden. „Darüber hinaus ist es interessant, diese Prozesse in ihrer Zeitabhängigkeit zu simulieren, um so auch die Zeitskalen der untersuchten Prozesse studieren zu können. Wesentliche Fragen dabei sind, wie schnell Protonen von geeigneten Seitenketten abgelöst bzw. an diese angelagert werden können oder auf welcher Zeitskala Protonen zwischen Protein und Wasser übergeben werden und wie schnell der Transport von Protonen entlang von Wasserbücken ist,“ erklärt Burkhard Schmidt.

Bei seinen Untersuchungen will Schmidt Verfahren anwenden, bei denen in jedem Zeitschritt der Simulationen die Energien bzw. Kräfte aus der Elektronenstruktur berechnet werden. Das unterscheidet seine Arbeit von „herkömmlichen“ Computersimulationen, bei denen empirische Modelle zur Berechnung von Energien und Kräften zwischen den Atomen angewandt werden. „Neben der fragwürdigen Genauigkeit und Übertragbarkeit solcher empirischer Modelle besteht die wesentliche Einschränkung darin, dass das Brechen und Bilden chemischer Bindungen so nicht beschrieben werden kann. Damit kann ich mich nicht zufrieden geben“, sagt er. Seine jetzige Forschung baut auf ein vorhergehendes Projekt auf, bei dem Dr. Schmidt die Reaktionen eines Protons und eines Elektrons in einem Wassercluster untersucht hat. (Cluster=Mikrotröpfchen)

Dank seiner mathematisch/physikalischen Methoden gelingt es Burkhard Schmidt schon jetzt, die chemischen Vorgänge auf Großrechnern einige Pikosekunden (1 Pikosekunde = 0,000 000 000 001 Sekunden) zu rechnen. „Das ist schon sehr viel, mein Wunsch aber wäre Nanosekunden (0,000 000 001) zu erreichen“, sagt der Wissenschaftler.

Weitere Informationen:
Dr. Burkhard Schmidt,
Tel.: +49 30 838 75369,
Email: burkhard.schmidt@fu-berlin.de

Rudolf Kellermann | idw
Weitere Informationen:
http://www.matheon.de
http://www.math.fu-berlin.de/groups/biocomputing/people/burkhard_schmidt.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften