Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Horch her! Wie sich Nervenzellen akustischen Signalen flexibel anpassen

10.04.2014

Je nach Eingangssignal generieren Neurone Aktionspotentiale nah oder entfernt vom Zellkörper, sagen Münchner Forscher vorher. Diese Flexibilität verbessere unsere Fähigkeit, Schallquellen lokalisieren zu können.    

Um akustische Informationen mit hoher zeitlicher Präzision zu verarbeiten, könnten Nervenzellen ihre Arbeitsweise flexibel der Situation anpassen. Bei geringer Frequenz der Eingangssignale erzeugen sie die meisten ausgehenden Aktionspotentiale nah am Zellkörper.


Eine Nervenzelle im Hirnstamm, die akustische Informationen verarbeitet. Je nach Situation lässt sie die Aktionspotentiale am Axon (dünner Fortsatz links) nah oder entfernt vom Zellkörper entstehen.

Felix Felmy, 2014

Nach hemmenden oder hochfrequenten Signalen hingegen lassen die Zellen viele Aktionspotentiale weiter entfernt entstehen. So sind sie maximal empfänglich für die unterschiedlichsten Arten von Eingangssignalen.

Zu dieser Erkenntnis ist ein Team von Wissenschaftlern um Professor Christian Leibold, Professor Benedikt Grothe und Dr. Felix Felmy vom Bernstein Zentrum und dem Bernstein Fokus Neurotechnologie in München, sowie der Ludwig-Maximilians-Universität München mithilfe von Computermodellen gekommen. Die Forscher berichten in der neusten Ausgabe der Zeitschrift Journal of Neuroscience über ihre Ergebnisse.

Kam der Knall von vorne oder von rechts? Um Schallquellen zu lokalisieren, werten Nervenzellen im Hirnstamm die Unterschiede der Ankunftszeit des Signals an beiden Ohren aus. Sie können dazu Differenzen von bis zu zehn millionstel Sekunden detektieren. Diese Fähigkeit verlangt, dass die Neurone sehr schnell erregt werden.

Dabei ändern sie die elektrische Spannung, die über ihre Zellmembran herrscht. Wird ein bestimmter Schwellenwert überschritten, generieren Nervenzellen ein starkes elektrisches Signal – ein sogenanntes Aktionspotential – welches effizient über die weite Strecke ihres Axons weitergeleitet werden kann ohne abgeschwächt zu werden Um den Schwellenwert zu überschreiten werden erregende Eingangssignale aufsummiert. Dies gelingt besser, je langsamer die Nervenzellen die elektrische Spannung über ihren Zellmembranen ändern.

Diese beide Anforderungen – schnelle Spannungsänderungen für eine hohe zeitliche Auflösung der Eingangssignale und langsame Spannungsänderungen für eine optimale Integration der Signale zur Erzeugung eines Aktionspotentials – stellen die Nervenzelle vor eine paradoxe Herausforderung. „Die Natur löst dieses Problem, indem sie beide Vorgänge räumlich trennt: die Eingangssignale werden im Zellkörper und den Dendriten verarbeitet, Aktionspotentiale entstehen im Zellfortsatz, dem Axon“, erklärt Leibold, Leiter der Studie. Doch wie nachhaltig ist diese räumliche Trennung?

In ihrer Studie maßen die Forscher die Geometrie des Axons und den Schwellenwert der entsprechenden Zellen und konstruierten damit ein Computermodell, mit dem sie die Effizienz dieser örtlichen Trennung untersuchten. Das Modell der Wissenschaftler sagt voraus, dass Neurone je nach Situation Aktionspotentiale mehr oder weniger nah am Zellkörper bilden.

Bei hochfrequenten oder hemmenden Eingangssignalen verlagern sie deren Entstehungsort von der Ursprungsstelle des Axons vorzugsweise in weiter entfernte Bereiche. Auf diese Weise stellen die Zellen sicher, dass sie Eingangssignale unterschiedlichster Art optimal verarbeiten – und wir dadurch sowohl kleine als auch große zeitliche Schalldifferenzen gut wahrnehmen und Geräusche im Raum orten können.

Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Christian Leibold
Computational Neuroscience
Department Biology II
Ludwig-Maximilians-Universität München
Großhaderner Straße 2
82152 Planegg-Martinsried
Tel: +49 (0)89 2180-74802
Email: leibold@bio.lmu.de

Originalpublikation:
S. Lehnert, M. C. Ford, O. Alexandrova, F. Hellmundth, F. Felmy, B. Grothe & C. Leibold (2014): Action potential generation in an anatomically constrained model of medial superior olive axons. Journal of Neuroscience, 34(15): 5370—5384.

Weitere Informationen:

http://neuro.bio.lmu.de/research_groups/res-leibold_ch persönliche Webseite Christian Leibold
http://www.bccn-munich.de Bernstein Zentrum München
http://www.uni-muenchen.de Ludwig-Maximilians-Universität München
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
22.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
22.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics