Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Horch her! Wie sich Nervenzellen akustischen Signalen flexibel anpassen

10.04.2014

Je nach Eingangssignal generieren Neurone Aktionspotentiale nah oder entfernt vom Zellkörper, sagen Münchner Forscher vorher. Diese Flexibilität verbessere unsere Fähigkeit, Schallquellen lokalisieren zu können.    

Um akustische Informationen mit hoher zeitlicher Präzision zu verarbeiten, könnten Nervenzellen ihre Arbeitsweise flexibel der Situation anpassen. Bei geringer Frequenz der Eingangssignale erzeugen sie die meisten ausgehenden Aktionspotentiale nah am Zellkörper.


Eine Nervenzelle im Hirnstamm, die akustische Informationen verarbeitet. Je nach Situation lässt sie die Aktionspotentiale am Axon (dünner Fortsatz links) nah oder entfernt vom Zellkörper entstehen.

Felix Felmy, 2014

Nach hemmenden oder hochfrequenten Signalen hingegen lassen die Zellen viele Aktionspotentiale weiter entfernt entstehen. So sind sie maximal empfänglich für die unterschiedlichsten Arten von Eingangssignalen.

Zu dieser Erkenntnis ist ein Team von Wissenschaftlern um Professor Christian Leibold, Professor Benedikt Grothe und Dr. Felix Felmy vom Bernstein Zentrum und dem Bernstein Fokus Neurotechnologie in München, sowie der Ludwig-Maximilians-Universität München mithilfe von Computermodellen gekommen. Die Forscher berichten in der neusten Ausgabe der Zeitschrift Journal of Neuroscience über ihre Ergebnisse.

Kam der Knall von vorne oder von rechts? Um Schallquellen zu lokalisieren, werten Nervenzellen im Hirnstamm die Unterschiede der Ankunftszeit des Signals an beiden Ohren aus. Sie können dazu Differenzen von bis zu zehn millionstel Sekunden detektieren. Diese Fähigkeit verlangt, dass die Neurone sehr schnell erregt werden.

Dabei ändern sie die elektrische Spannung, die über ihre Zellmembran herrscht. Wird ein bestimmter Schwellenwert überschritten, generieren Nervenzellen ein starkes elektrisches Signal – ein sogenanntes Aktionspotential – welches effizient über die weite Strecke ihres Axons weitergeleitet werden kann ohne abgeschwächt zu werden Um den Schwellenwert zu überschreiten werden erregende Eingangssignale aufsummiert. Dies gelingt besser, je langsamer die Nervenzellen die elektrische Spannung über ihren Zellmembranen ändern.

Diese beide Anforderungen – schnelle Spannungsänderungen für eine hohe zeitliche Auflösung der Eingangssignale und langsame Spannungsänderungen für eine optimale Integration der Signale zur Erzeugung eines Aktionspotentials – stellen die Nervenzelle vor eine paradoxe Herausforderung. „Die Natur löst dieses Problem, indem sie beide Vorgänge räumlich trennt: die Eingangssignale werden im Zellkörper und den Dendriten verarbeitet, Aktionspotentiale entstehen im Zellfortsatz, dem Axon“, erklärt Leibold, Leiter der Studie. Doch wie nachhaltig ist diese räumliche Trennung?

In ihrer Studie maßen die Forscher die Geometrie des Axons und den Schwellenwert der entsprechenden Zellen und konstruierten damit ein Computermodell, mit dem sie die Effizienz dieser örtlichen Trennung untersuchten. Das Modell der Wissenschaftler sagt voraus, dass Neurone je nach Situation Aktionspotentiale mehr oder weniger nah am Zellkörper bilden.

Bei hochfrequenten oder hemmenden Eingangssignalen verlagern sie deren Entstehungsort von der Ursprungsstelle des Axons vorzugsweise in weiter entfernte Bereiche. Auf diese Weise stellen die Zellen sicher, dass sie Eingangssignale unterschiedlichster Art optimal verarbeiten – und wir dadurch sowohl kleine als auch große zeitliche Schalldifferenzen gut wahrnehmen und Geräusche im Raum orten können.

Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Christian Leibold
Computational Neuroscience
Department Biology II
Ludwig-Maximilians-Universität München
Großhaderner Straße 2
82152 Planegg-Martinsried
Tel: +49 (0)89 2180-74802
Email: leibold@bio.lmu.de

Originalpublikation:
S. Lehnert, M. C. Ford, O. Alexandrova, F. Hellmundth, F. Felmy, B. Grothe & C. Leibold (2014): Action potential generation in an anatomically constrained model of medial superior olive axons. Journal of Neuroscience, 34(15): 5370—5384.

Weitere Informationen:

http://neuro.bio.lmu.de/research_groups/res-leibold_ch persönliche Webseite Christian Leibold
http://www.bccn-munich.de Bernstein Zentrum München
http://www.uni-muenchen.de Ludwig-Maximilians-Universität München
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wegbereiter für Vitamin A in Reis
21.07.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Pharmakologie - Im Strom der Bläschen
21.07.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten