Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Horch her! Wie sich Nervenzellen akustischen Signalen flexibel anpassen

10.04.2014

Je nach Eingangssignal generieren Neurone Aktionspotentiale nah oder entfernt vom Zellkörper, sagen Münchner Forscher vorher. Diese Flexibilität verbessere unsere Fähigkeit, Schallquellen lokalisieren zu können.    

Um akustische Informationen mit hoher zeitlicher Präzision zu verarbeiten, könnten Nervenzellen ihre Arbeitsweise flexibel der Situation anpassen. Bei geringer Frequenz der Eingangssignale erzeugen sie die meisten ausgehenden Aktionspotentiale nah am Zellkörper.


Eine Nervenzelle im Hirnstamm, die akustische Informationen verarbeitet. Je nach Situation lässt sie die Aktionspotentiale am Axon (dünner Fortsatz links) nah oder entfernt vom Zellkörper entstehen.

Felix Felmy, 2014

Nach hemmenden oder hochfrequenten Signalen hingegen lassen die Zellen viele Aktionspotentiale weiter entfernt entstehen. So sind sie maximal empfänglich für die unterschiedlichsten Arten von Eingangssignalen.

Zu dieser Erkenntnis ist ein Team von Wissenschaftlern um Professor Christian Leibold, Professor Benedikt Grothe und Dr. Felix Felmy vom Bernstein Zentrum und dem Bernstein Fokus Neurotechnologie in München, sowie der Ludwig-Maximilians-Universität München mithilfe von Computermodellen gekommen. Die Forscher berichten in der neusten Ausgabe der Zeitschrift Journal of Neuroscience über ihre Ergebnisse.

Kam der Knall von vorne oder von rechts? Um Schallquellen zu lokalisieren, werten Nervenzellen im Hirnstamm die Unterschiede der Ankunftszeit des Signals an beiden Ohren aus. Sie können dazu Differenzen von bis zu zehn millionstel Sekunden detektieren. Diese Fähigkeit verlangt, dass die Neurone sehr schnell erregt werden.

Dabei ändern sie die elektrische Spannung, die über ihre Zellmembran herrscht. Wird ein bestimmter Schwellenwert überschritten, generieren Nervenzellen ein starkes elektrisches Signal – ein sogenanntes Aktionspotential – welches effizient über die weite Strecke ihres Axons weitergeleitet werden kann ohne abgeschwächt zu werden Um den Schwellenwert zu überschreiten werden erregende Eingangssignale aufsummiert. Dies gelingt besser, je langsamer die Nervenzellen die elektrische Spannung über ihren Zellmembranen ändern.

Diese beide Anforderungen – schnelle Spannungsänderungen für eine hohe zeitliche Auflösung der Eingangssignale und langsame Spannungsänderungen für eine optimale Integration der Signale zur Erzeugung eines Aktionspotentials – stellen die Nervenzelle vor eine paradoxe Herausforderung. „Die Natur löst dieses Problem, indem sie beide Vorgänge räumlich trennt: die Eingangssignale werden im Zellkörper und den Dendriten verarbeitet, Aktionspotentiale entstehen im Zellfortsatz, dem Axon“, erklärt Leibold, Leiter der Studie. Doch wie nachhaltig ist diese räumliche Trennung?

In ihrer Studie maßen die Forscher die Geometrie des Axons und den Schwellenwert der entsprechenden Zellen und konstruierten damit ein Computermodell, mit dem sie die Effizienz dieser örtlichen Trennung untersuchten. Das Modell der Wissenschaftler sagt voraus, dass Neurone je nach Situation Aktionspotentiale mehr oder weniger nah am Zellkörper bilden.

Bei hochfrequenten oder hemmenden Eingangssignalen verlagern sie deren Entstehungsort von der Ursprungsstelle des Axons vorzugsweise in weiter entfernte Bereiche. Auf diese Weise stellen die Zellen sicher, dass sie Eingangssignale unterschiedlichster Art optimal verarbeiten – und wir dadurch sowohl kleine als auch große zeitliche Schalldifferenzen gut wahrnehmen und Geräusche im Raum orten können.

Das Bernstein Zentrum München ist Teil des Nationalen Bernstein Netzwerks Computational Neuroscience. Seit 2004 fördert das Bundesministerium für Bildung und Forschung (BMBF) mit dieser Initiative die neue Forschungsdisziplin Computational Neuroscience mit über 170 Mio. €. Das Netzwerk ist benannt nach dem deutschen Physiologen Julius Bernstein (1835-1917).

Weitere Informationen erteilen Ihnen gerne:
Prof. Dr. Christian Leibold
Computational Neuroscience
Department Biology II
Ludwig-Maximilians-Universität München
Großhaderner Straße 2
82152 Planegg-Martinsried
Tel: +49 (0)89 2180-74802
Email: leibold@bio.lmu.de

Originalpublikation:
S. Lehnert, M. C. Ford, O. Alexandrova, F. Hellmundth, F. Felmy, B. Grothe & C. Leibold (2014): Action potential generation in an anatomically constrained model of medial superior olive axons. Journal of Neuroscience, 34(15): 5370—5384.

Weitere Informationen:

http://neuro.bio.lmu.de/research_groups/res-leibold_ch persönliche Webseite Christian Leibold
http://www.bccn-munich.de Bernstein Zentrum München
http://www.uni-muenchen.de Ludwig-Maximilians-Universität München
http://www.nncn.de Nationales Bernstein Netzwerk Computational Neuroscience

Mareike Kardinal | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Proteine zueinander finden
21.02.2017 | Charité – Universitätsmedizin Berlin

nachricht Kleine Moleküle gegen altersbedingte Erkrankungen
21.02.2017 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Im Focus: Innovative Antikörper für die Tumortherapie

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig von diesen teuren Medikamenten profitieren, wird intensiv an deren Verbesserung gearbeitet. Forschern um Prof. Thomas Valerius an der Christian Albrechts Universität Kiel gelang es nun, innovative Antikörper mit verbesserter Wirkung zu entwickeln.

Immuntherapie mit Antikörpern stellt heute für viele Krebspatienten einen Erfolg versprechenden Ansatz dar. Weil aber längst nicht alle Patienten nachhaltig...

Im Focus: Durchbruch mit einer Kette aus Goldatomen

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: Hoch wirksamer Malaria-Impfstoff erfolgreich getestet

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Tübinger Wissenschaftler erreichen Impfschutz von bis zu 100 Prozent – Lebendimpfstoff unter kontrollierten Bedingungen eingesetzt

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungen

Physikerinnen und Physiker diskutieren in Bremen über aktuelle Grenzen der Physik

21.02.2017 | Veranstaltungen

Kniffe mit Wirkung in der Biotechnik

21.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit den Betriebsräten Sozialpläne

21.02.2017 | Unternehmensmeldung

Der Lkw der Zukunft kommt ohne Fahrer aus

21.02.2017 | Veranstaltungsnachrichten

Zur Sprache gebracht: Und das intelligente Haus „hört zu“

21.02.2017 | Messenachrichten