Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hop hält „springende Gene“ in Schach

11.05.2017

Biologen der JGU entwickeln bioinformatische Algorithmen zur Auswertung riesiger Datensätze

Die Erbinformation höherer Lebewesen wird als genetischer Code in Form von DNA-Bausteinen auf den Chromosomen kodiert. In nahezu allen bis heute untersuchten Organismen findet man neben den funktionell relevanten Genen aber auch „parasitische DNA“, sogenannte springende Gene oder Transposons.


Aus den Eiern von Fruchtfliegen schlüpfen Larven, aus denen sich über drei Larvenstadien und ein Puppen-Stadium die adulten Fliegen der nächsten Generation entwickeln (schwarz). Fliegen mit deaktiviertem Hop-Gen (orange) legen zwar Eier, jedoch schlüpfen aus diesen keine Larven.

Abb./©: David Rosenkranz, JGU

Diese springenden Gene können sich im Genom ihres jeweiligen Wirts ausbreiten, indem sie sich selbst kopieren oder ausschneiden und an anderer Stelle eines Chromosoms wieder einfügen. Transposons haben in der Regel keinen direkten Nutzen für ihren Wirtsorganismus, sondern stellen eine Gefahr für die Integrität des Genoms dar.

Es ist daher nicht überraschend, dass man innerhalb einer Zelle eine Vielzahl molekularer Mechanismen findet, die an der Kontrolle solcher Transposons beteiligt sind und deren Ausbreitung verhindern. Einer dieser Mechanismen, der speziell Keimbahnzellen schützt, beruht auf bestimmten Proteinen der Argonauten-Klasse, den Piwi-Proteinen, sowie auf kleinen RNA-Molekülen, die an diese Proteine gebundene sind, den piRNAs. Piwi-Proteine können gezielt Transposons deaktivieren, da ihre piRNAs die Transposons nach dem Schlüssel-Schloss-Prinzip erkennen.

Dank intensiver Forschung verstehen Mikrobiologen heute recht gut, wie diese Piwi-basierten Mechanismen funktionieren und welche Proteine bei der Kontrolle von Transposons beteiligt sind, auch wenn viele Details noch immer rätselhaft bleiben. Nun konnte ein Team um Vamsi Gangaraju von der Medizinischen Universität South Carolina, Charleston, USA, in Kooperation mit Dr. David Rosenkranz von der Johannes Gutenberg-Universität Mainz (JGU) ein weiteres essentielles Puzzleteil, ein Gen namens Hop, identifizieren.

Studien dieser Art beruhen auf der Analyse von Millionen verschiedener kleiner RNA-Moleküle. Zwar kann heute dank neuer Hochdurchsatz-Sequenziermethoden prinzipiell jede Arbeitsgruppe mit wenig Aufwand riesige Sequenzdatensätze erzeugen, allerdings bleibt die bioinformatische Auswertung dieser Daten eine Herausforderung. Die Arbeitsgruppe um David Rosenkranz vom Institut für Organismische und Molekulare Evolutionsbiologie hat sich in den letzten Jahren auf die Auswertung solcher Datensätze spezialisiert und eine Reihe bioinformatischer Algorithmen entwickelt, die zur Auswertung der Daten der vorliegenden Studie angewendet wurden.

Die Ergebnisse zeigen, dass die Produktion von piRNAs entscheidend gestört ist, wenn das Hop-Gen in weiblichen Fliegen gezielt ausgeschaltet wird. Dies hat zur Folge, dass Transposons aktiviert werden, was wiederum zum programmierten Zelltod führt. Fliegen mit deaktiviertem Hop-Gen legen zwar in gleichem Maße Eier wie ihre Wildtyp-Pendants, jedoch entwickeln sich diese nicht zu Larven weiter, sondern sterben ab.

Abbildung:
http://www.uni-mainz.de/bilder_presse/10_iome_small_rna_hop.jpg
Aus den Eiern von Fruchtfliegen schlüpfen Larven, aus denen sich über drei Larvenstadien und ein Puppen-Stadium die adulten Fliegen der nächsten Generation entwickeln (schwarz). Fliegen mit deaktiviertem Hop-Gen (orange) legen zwar Eier, jedoch schlüpfen aus diesen keine Larven.
Abb./©: David Rosenkranz, JGU

Veröffentlichung:
Joseph A. Karam et al.
Co-chaperone Hsp70/Hsp90 organizing protein (Hop) is Required for Transposon Silencing and piRNA Biogenesis
Journal of Biological Chemistry, 13. Februar 2017
DOI: 10.1074/jbc.C117.777730

Weitere Informationen:
Dr. David Rosenkranz
Institut für Organismische und Molekulare Evolutionsbiologie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-24004
E-Mail: rosenkranz@uni-mainz.de
http://www.smallrnagroup.uni-mainz.de/

Weitere Links:
http://www.jbc.org/content/early/2017/02/13/jbc.C117.777730.abstract (Article)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie