Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hop hält „springende Gene“ in Schach

11.05.2017

Biologen der JGU entwickeln bioinformatische Algorithmen zur Auswertung riesiger Datensätze

Die Erbinformation höherer Lebewesen wird als genetischer Code in Form von DNA-Bausteinen auf den Chromosomen kodiert. In nahezu allen bis heute untersuchten Organismen findet man neben den funktionell relevanten Genen aber auch „parasitische DNA“, sogenannte springende Gene oder Transposons.


Aus den Eiern von Fruchtfliegen schlüpfen Larven, aus denen sich über drei Larvenstadien und ein Puppen-Stadium die adulten Fliegen der nächsten Generation entwickeln (schwarz). Fliegen mit deaktiviertem Hop-Gen (orange) legen zwar Eier, jedoch schlüpfen aus diesen keine Larven.

Abb./©: David Rosenkranz, JGU

Diese springenden Gene können sich im Genom ihres jeweiligen Wirts ausbreiten, indem sie sich selbst kopieren oder ausschneiden und an anderer Stelle eines Chromosoms wieder einfügen. Transposons haben in der Regel keinen direkten Nutzen für ihren Wirtsorganismus, sondern stellen eine Gefahr für die Integrität des Genoms dar.

Es ist daher nicht überraschend, dass man innerhalb einer Zelle eine Vielzahl molekularer Mechanismen findet, die an der Kontrolle solcher Transposons beteiligt sind und deren Ausbreitung verhindern. Einer dieser Mechanismen, der speziell Keimbahnzellen schützt, beruht auf bestimmten Proteinen der Argonauten-Klasse, den Piwi-Proteinen, sowie auf kleinen RNA-Molekülen, die an diese Proteine gebundene sind, den piRNAs. Piwi-Proteine können gezielt Transposons deaktivieren, da ihre piRNAs die Transposons nach dem Schlüssel-Schloss-Prinzip erkennen.

Dank intensiver Forschung verstehen Mikrobiologen heute recht gut, wie diese Piwi-basierten Mechanismen funktionieren und welche Proteine bei der Kontrolle von Transposons beteiligt sind, auch wenn viele Details noch immer rätselhaft bleiben. Nun konnte ein Team um Vamsi Gangaraju von der Medizinischen Universität South Carolina, Charleston, USA, in Kooperation mit Dr. David Rosenkranz von der Johannes Gutenberg-Universität Mainz (JGU) ein weiteres essentielles Puzzleteil, ein Gen namens Hop, identifizieren.

Studien dieser Art beruhen auf der Analyse von Millionen verschiedener kleiner RNA-Moleküle. Zwar kann heute dank neuer Hochdurchsatz-Sequenziermethoden prinzipiell jede Arbeitsgruppe mit wenig Aufwand riesige Sequenzdatensätze erzeugen, allerdings bleibt die bioinformatische Auswertung dieser Daten eine Herausforderung. Die Arbeitsgruppe um David Rosenkranz vom Institut für Organismische und Molekulare Evolutionsbiologie hat sich in den letzten Jahren auf die Auswertung solcher Datensätze spezialisiert und eine Reihe bioinformatischer Algorithmen entwickelt, die zur Auswertung der Daten der vorliegenden Studie angewendet wurden.

Die Ergebnisse zeigen, dass die Produktion von piRNAs entscheidend gestört ist, wenn das Hop-Gen in weiblichen Fliegen gezielt ausgeschaltet wird. Dies hat zur Folge, dass Transposons aktiviert werden, was wiederum zum programmierten Zelltod führt. Fliegen mit deaktiviertem Hop-Gen legen zwar in gleichem Maße Eier wie ihre Wildtyp-Pendants, jedoch entwickeln sich diese nicht zu Larven weiter, sondern sterben ab.

Abbildung:
http://www.uni-mainz.de/bilder_presse/10_iome_small_rna_hop.jpg
Aus den Eiern von Fruchtfliegen schlüpfen Larven, aus denen sich über drei Larvenstadien und ein Puppen-Stadium die adulten Fliegen der nächsten Generation entwickeln (schwarz). Fliegen mit deaktiviertem Hop-Gen (orange) legen zwar Eier, jedoch schlüpfen aus diesen keine Larven.
Abb./©: David Rosenkranz, JGU

Veröffentlichung:
Joseph A. Karam et al.
Co-chaperone Hsp70/Hsp90 organizing protein (Hop) is Required for Transposon Silencing and piRNA Biogenesis
Journal of Biological Chemistry, 13. Februar 2017
DOI: 10.1074/jbc.C117.777730

Weitere Informationen:
Dr. David Rosenkranz
Institut für Organismische und Molekulare Evolutionsbiologie
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-24004
E-Mail: rosenkranz@uni-mainz.de
http://www.smallrnagroup.uni-mainz.de/

Weitere Links:
http://www.jbc.org/content/early/2017/02/13/jbc.C117.777730.abstract (Article)

Petra Giegerich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Software mit Grips
20.04.2018 | Max-Planck-Institut für Hirnforschung, Frankfurt am Main

nachricht Einen Schritt näher an die Wirklichkeit
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Grösster Elektrolaster der Welt nimmt Arbeit auf

20.04.2018 | Interdisziplinäre Forschung

Bilder magnetischer Strukturen auf der Nano-Skala

20.04.2018 | Physik Astronomie

Kieler Forschende entschlüsseln neuen Baustein in der Entwicklung des globalen Klimas

20.04.2018 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics