Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Homer verhindert stressbedingte Lernschwäche

27.02.2013
Ein Mangel an Homer-1 im Gehirn lässt Mäuse schlechter lernen

Vor Prüfungen oder in kritischen Situationen sollten wir besonders lernfähig und aufnahmebereit sein. Doch akuter Prüfungsstress und Lampenfieber führt bei vielen Menschen zu Lernblockaden und verringertem Erinnerungsvermögen.


Die schwarze Maus wird als Eindringling in das Territorium der weißen Maus von dieser durch aggressives Verhalten unter hohen sozialen Stress gesetzt. © MPI für Psychiatrie

Wissenschaftler des Max-Planck-Instituts für Psychiatrie in München haben nun einen Stresshormon-unabhängigen ursächlichen Mechanismus für diese Lerndefizite entdeckt. In Tierstudien zeigen die Forscher, dass sozialer Stress die Mengen an Homer-1 im Hippocampus verringert - einer für Lernen zentralen Gehirnregion. Dieser spezifische Proteinmangel führt zu einer veränderten Nervenzellaktivität, in deren Folge die Tiere schlechter lernen.

Experimentell lässt sich das Lerndefizit durch Verabreichung zusätzlicher Proteinmengen verhindern. Dies macht Homer-1 zu einem Schlüsselmolekül für die Entwicklung von Medikamenten gegen stressbedingte Lernschwäche.

Klaus Wagner, Wissenschaftler am Max-Planck-Institut für Psychiatrie, hat das Lernverhalten von Mäusen untersucht, nachdem sie stark gestresst wurden. Er setzte die Tiere sozialem Stress aus – einer Belastung, die auch Menschen heutzutage oft empfinden. Eine männliche Maus wurde dabei für fünf Minuten in den Käfig eines aggressiven Artgenossen gesetzt, der diesen Eindringling mit Attacken und Angriffen zu vertreiben versucht. Die Testmaus konnte, anders als in freier Natur, nicht aus dem Käfig fliehen und stand unter starkem Stress, wie Messungen der Stresshormone im Blut nachwiesen.

Nach acht Stunden, in denen sich das Tier in seinem eigenen Käfig erholen konnte, wurde sein Verhalten untersucht. Während Motivation, Aktivität und Sinnesfunktionen der Maus zu diesem Zeitpunkt nicht beeinträchtigt waren, traten in ihrem Lernverhalten deutliche Einbußen auf. Eine einzige fünfminütige soziale Stresssituation hatte also genügt, um das Tier Stunden später schlechter lernen zu lassen.

Die Forscher am Max-Planck-Institut versuchten nun herauszufinden, welche Mechanismen für diese Lerndefizite verantwortlich sind. Sie identifizierten das Protein Homer-1, dessen Konzentration spezifisch im Hippocampus nach Stress abnimmt. Interessanterweise konnten die Wissenschaftler durch die Gabe eines Stresshormon-ähnlichen Wirkstoffs keine Konzentrationsänderungen von Homer-1 im Gehirn auslösen. Damit wurde erstmalig gezeigt, dass einwirkender Stress neben der durch Stresshormone vermittelten Wirkung auf das Nervensystem weitere unabhängige Regulationssysteme aktiviert. Interessanterweise löst eine Stresshormonerhöhung ohne eigentliche Stresserfahrung weder die beobachtete Lernschwäche noch die Konzentrationsänderungen von Homer-1 im Gehirn aus. Damit zeigen die Forscher, dass einwirkender Stress weitere - Stresshormon unabhängige - Regulationssysteme aktiviert. So moduliert das Protein Homer-1 im Zusammenspiel mit dem neuronalen Botenstoff Glutamat und dessen Rezeptor die Kommunikation an den Synapsen der Nervenzellen. Nimmt die Menge an Homer-1 nach Stress im Hippocampus ab, ist die natürliche Rezeptoraktivität empfindlich gestört und die Lernfähigkeit nimmt ab. Diesen Effekt konnten die Forscher verhindern, indem sie die Homer-1-Konzentration wieder erhöhten.

Mathias Schmidt, Arbeitsgruppenleiter am Max-Planck-Institut für Psychiatrie interpretiert die Ergebnisse wie folgt: „Mit unserer Studie haben wir eine von Stresshormonen weitgehend unabhängige Regulation der Glutamat-vermittelten Kommunikation im Hippocampus nachgewiesen, die das Lernverhalten direkt reguliert. Das Molekül Homer-1 nimmt in diesem Prozess eine Schlüsselposition ein, die uns zukünftig hoffentlich neue Möglichkeiten der gezielten pharmakologischen Intervention erlaubt, um stressbedingte Lerndefizite zu vermeiden.“
Ansprechpartner

Dr. Mathias V. Schmidt,
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-519
E-Mail: mschmidt@­mpipsykl.mpg.de
Dr. Barbara Meyer,
Max-Planck-Institut für Psychiatrie, München
Telefon: +49 89 30622-616
Fax: +49 89 30622-348
E-Mail: bmeyer@­mpipsykl.mpg.de
Originalpublikation
Klaus V. Wagner, Jakob Hartmann, Katharina Mangold, Xiao-Dong Wang, Christiana Labermaier, Claudia Liebl, Miriam Wolf, Nils C. Gassen, Florian Holsboer, Theo Rein, Marianne B. Müller & Mathias V. Schmidt
Homer1 mediates acute stress-induced cognitive deficits in the dorsal hippocampus

Journal of Neuroscience, 27. Februar 2013

Dr. Mathias V. Schmidt | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6973945/stress-lernschwaeche

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung
26.07.2017 | Universität Bielefeld

nachricht Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa
26.07.2017 | Universitätsklinikum Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact Innovation Ventures investiert in induktive Ladetechnologie

26.07.2017 | Unternehmensmeldung

Blattkäfer: Schon winzige Pestizid-Dosis beeinträchtigt Fortpflanzung

26.07.2017 | Biowissenschaften Chemie

Akute myeloische Leukämie (AML): Neues Medikament steht kurz vor der Zulassung in Europa

26.07.2017 | Biowissenschaften Chemie