Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Holzweg - Neu entdeckte Gene erleichtern die Bioethanolgewinnung

22.09.2010
Xylane sind Mehrfachzucker, die in allen Pflanzen vorkommen und sich ideal zur Herstellung von Bioethanol eignen.

Sie sind Hauptbestandteil von Lignozellulose, einer Stoffklasse, die Pflanzen Stabilität verleiht und in Holz, Stängeln und anderen verholzten Pflanzenteilen vorkommt. Das Problem: Lignozellulose lässt sich nur schwer aufschließen, so dass die Xylan- Gewinnung zurzeit sehr viel Energie und den Einsatz großer Mengen Chemikalien erfordert.

Forscher der Universität Cambridge in Großbritannien haben nun Gene für zwei Enzyme entdeckt, die der Schlüssel zur Lösung sein könnten. Die beiden Enzyme steuern den Einbau der Xylane in pflanzliche Zellulose. Schaltet man diese Gene aus, gedeihen die Pflanzen völlig normal, wie Versuche mit Arabidopsis (Acker-Schmalwand) zeigten.

Lediglich die Stängel der Versuchspflanzen waren in der Studie etwas schwächer als bei normalen Pflanzen. Aber vor allem ließen sich die verholzten Teile der Pflanze deutlich leichter aufschließen. Der Energie- und Chemikalienaufwand für die Xylanextraktion fiel entsprechend geringer aus. Die Wissenschaftler glauben mit der Entdeckung der Enzyme einen Weg gefunden zu haben, den hohen Xylangehalt in Pflanzen effizienter für die Bioethanolgewinnung ausnutzen zu können, ohne die Vitalität der Pflanzen zu beeinträchtigen.

Nach Angaben der Forscher sind die Ergebnisse der Studie auch deshalb besonders relevant, weil im Erfolgsfall die Energie aus Non-Food-Pflanzen wie Bäumen oder Gräsern viel besser verwertet werden kann. Zudem benötigt man für ihre Nutzung keine wertvollen Ackerflächen. Sie stehen auch nicht in Konkurrenz zum Anbau von Reis, Getreide und anderen Nutzpflanzen. In einem nächsten Schritt wollen die Forscher testen, ob die Ergebnisse auch auf klassische Energiepflanzen wie Weiden und Miscanthus übertragbar sind.

Jürgen Beckhoff | www.aid.de
Weitere Informationen:
http://www.aid.de

Weitere Berichte zu: Bioethanolgewinnung Lignozellulose Xylane enzyme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics