Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoher Druck und hohe Temperaturen machen Kohlensäure stabil

03.02.2016

MPIC-Forscher „zähmen“ reaktives Molekül bei hohem Druck – Bedeutung der Substanz für Erdsystem könnte bisher unterschätzt worden sein

Bisher wurde Kohlensäure (H2CO3) von der Wissenschaft eher stiefmütterlich behandelt und in Untersuchungen kaum berücksichtigt. Da Kohlensäure beim Kontakt mit Wasser in Sekundenbruchteilen reagiert, kommt es in der Natur nur in sehr geringen Mengen vor und wurde im geologischen Kontext in der Regel nicht näher betrachtet.


Einspannen der Diamantstempelzelle am Raman-Spektrometer: Janek Zeuschner (l.) und Hongbo Wang gelang es mithilfe dieses Hochdruckinstruments, stabile Kohlensäure herzustellen.

Anne Reuter

Forschern des Max-Planck-Instituts für Chemie gelang es nun aber, mithilfe einer neuen Untersuchungsmethode zu zeigen, dass Kohlensäure durch hohen Druck und bei gleichzeitigem Vorliegen hoher Temperaturen stabilisiert wird. Ihre Studie erschien kürzlich in dem Open Access Magazin „Scientific Reports“ der Nature Publishing Group.

Mithilfe einer Diamantstempelzelle und eines CO2-Lasers rekonstruierten die Mainzer Forscher Umweltbedingungen, die in rund 80 Kilometern Tiefe des Erdinnern vorliegen. Bei einem Druck von bis zu 9,1 Gigapascal (GPa) und Temperaturen von 1.200 °C (eine Hitze, wie an der Oberfläche eines Vulkans) untersuchten sie das Verhalten von CO2 und H2O.

Dabei entdeckte das Forscherteam, bestehend aus Wissenschaftlern der Abteilung Atmosphärenchemie und der Hochdruckforschungsgruppe unter Leitung von Mikhail Eremets, Erstaunliches: Ab einem Druck von 2,4 GPa und Temperaturen über 97 °C ist in flüssigem Wasser gelöste Kohlensäure stabil.

„Ursprünglich geplant war eine Messreihe zur Reaktivität von kohlenstoffhaltigen Fluiden mit unterschiedlichen Verhältnissen von Wasserstoff und Sauerstoff im Inneren der Erde, d. h. unter extrem hohem Druck“, erklärt Janek Zeuschner den Beginn der Studie, der als Doktorand des Max Planck Graduate Centers an diesem Projekt mitarbeitete. Um den Versuchsaufbau an einem verwandten System zu testen, wählten sie eines der am besten untersuchten aus: CO2 und H2O.

Wasser und Kohlendioxid sind jedoch unter den untersuchten Drücken bei Raumtemperatur fest. Da chemische Reaktionen in diesem Zustand nur sehr langsam ablaufen, erhitzten die Wissenschaftler die Probe mithilfe eines CO2-Lasers. Erstaunt stellten Sie schließlich fest, dass dabei ab Drücken über 2,4 GPa Kristalle in der Diamantstempelzelle entstanden waren.

Janek Zeuschner bemerkte als erster, welche Bedeutung die daraufhin angefertigten Raman- und Infrarotspektren haben könnten: die Bildung fester Kohlensäure. „Vorherige Studien hatten keine Hinweise geliefert, dass CO2 und H2O bei hohem Druck Kohlensäure in beträchtlichen Mengen bilden könnten“, erklärt Janek das Unerwartete an dieser Entdeckung. Weitere Experimente zeigten, dass die Kristalle sich bei niedrigeren Temperaturen in flüssigem Wasser auflösen, aber stabile Kohlesäuremoleküle in Lösung verbleiben und mehr davon entstehen, je höher die Lösung erwärmt wurde.

„An diesem Punkt wurde uns klar, dass, entgegen der gängigen Meinung, Kohlensäure tatsächlich ein ziemlich typisches Molekül in Tiefen von mehr als 80 km auf der Erde sein könnte. Denn im Innern der Erde liegen genau diese Bedingungen vor: Extrem hoher Druck und gleichzeitig sehr hohe Temperaturen“, erklärt Hongbo Wang aus der Hochdruckforschungsgruppe die Ergebnisse der Studie.

Und noch etwas stellten die Wissenschaftler in Ihrer Versuchsreihe fest: Beim Erhitzen der Probe mit einem Laser, wird am „hinteren“ Ende des bewegten Laserspots die Probe sehr schnell wieder fest und friert in gewissen Sinne die Probe in dem Zustand ein, in dem sie sich bei hoher Temperatur befunden hat. Das heißt, dass sehr viel Kohlensäure in der Lösung ist, mehr als sich in Wasser bei niedrigen Temperaturen (z.B. in der Nähe der Schmelztemperatur) lösen kann. Da die „überschüssige“ Kohlensäure in Lösung nicht mehr stabil ist, bildet sich feste Kohlensäure. Durch den schnellen Temperaturabfall am Rand des Laserspots gefriert dann das Wasser (durch den hohen Druck) um die feste Kohlensäure herum, bevor diese sich wieder auflösen kann. „Wir können die feste Kohlensäure also bei Raumtemperatur und bis zur Schmelztemperatur des Wassers beim eingestellten Druck beobachten, nachdem wir mit dem Laser über die Probe gefahren sind“, so Chemiker Janek Zeuschner weiter.

Die Entdeckung könnte im weiteren Verlauf sowohl Auswirkungen auf das gegenwärtige Verständnis der physikalischen Eigenschaften (bspw. die elektrische Leitfähigkeit) unterirdischer Fluide, die molekulare Kohlensäure transportieren, als auch auf die Theorien der chemischen Evolution in diesen Fluiden und damit auf die Entstehung des Lebens haben, vermuten die MPIC-Forscher. „Dass Kohlensäure unter bestimmten Bedingungen eine stabile und damit quantitativ relevante Substanz in der Erde ist, ändert unser Verständnis dieser am globalen Kohlenstoffkreislauf beteiligten Spezies grundlegend“, fasst es Jonathan Williams, Gruppenleiter in der Abteilung Atmosphärenchemie, zusammen.

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/hoher-druck-und-hohe-temperatu...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf der molekularen Streckbank
24.02.2017 | Technische Universität München

nachricht Sicherungskopie im Zentralhirn: Wie Fruchtfliegen ein Ortsgedächtnis bilden
24.02.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie