Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hoher Druck und hohe Temperaturen machen Kohlensäure stabil

03.02.2016

MPIC-Forscher „zähmen“ reaktives Molekül bei hohem Druck – Bedeutung der Substanz für Erdsystem könnte bisher unterschätzt worden sein

Bisher wurde Kohlensäure (H2CO3) von der Wissenschaft eher stiefmütterlich behandelt und in Untersuchungen kaum berücksichtigt. Da Kohlensäure beim Kontakt mit Wasser in Sekundenbruchteilen reagiert, kommt es in der Natur nur in sehr geringen Mengen vor und wurde im geologischen Kontext in der Regel nicht näher betrachtet.


Einspannen der Diamantstempelzelle am Raman-Spektrometer: Janek Zeuschner (l.) und Hongbo Wang gelang es mithilfe dieses Hochdruckinstruments, stabile Kohlensäure herzustellen.

Anne Reuter

Forschern des Max-Planck-Instituts für Chemie gelang es nun aber, mithilfe einer neuen Untersuchungsmethode zu zeigen, dass Kohlensäure durch hohen Druck und bei gleichzeitigem Vorliegen hoher Temperaturen stabilisiert wird. Ihre Studie erschien kürzlich in dem Open Access Magazin „Scientific Reports“ der Nature Publishing Group.

Mithilfe einer Diamantstempelzelle und eines CO2-Lasers rekonstruierten die Mainzer Forscher Umweltbedingungen, die in rund 80 Kilometern Tiefe des Erdinnern vorliegen. Bei einem Druck von bis zu 9,1 Gigapascal (GPa) und Temperaturen von 1.200 °C (eine Hitze, wie an der Oberfläche eines Vulkans) untersuchten sie das Verhalten von CO2 und H2O.

Dabei entdeckte das Forscherteam, bestehend aus Wissenschaftlern der Abteilung Atmosphärenchemie und der Hochdruckforschungsgruppe unter Leitung von Mikhail Eremets, Erstaunliches: Ab einem Druck von 2,4 GPa und Temperaturen über 97 °C ist in flüssigem Wasser gelöste Kohlensäure stabil.

„Ursprünglich geplant war eine Messreihe zur Reaktivität von kohlenstoffhaltigen Fluiden mit unterschiedlichen Verhältnissen von Wasserstoff und Sauerstoff im Inneren der Erde, d. h. unter extrem hohem Druck“, erklärt Janek Zeuschner den Beginn der Studie, der als Doktorand des Max Planck Graduate Centers an diesem Projekt mitarbeitete. Um den Versuchsaufbau an einem verwandten System zu testen, wählten sie eines der am besten untersuchten aus: CO2 und H2O.

Wasser und Kohlendioxid sind jedoch unter den untersuchten Drücken bei Raumtemperatur fest. Da chemische Reaktionen in diesem Zustand nur sehr langsam ablaufen, erhitzten die Wissenschaftler die Probe mithilfe eines CO2-Lasers. Erstaunt stellten Sie schließlich fest, dass dabei ab Drücken über 2,4 GPa Kristalle in der Diamantstempelzelle entstanden waren.

Janek Zeuschner bemerkte als erster, welche Bedeutung die daraufhin angefertigten Raman- und Infrarotspektren haben könnten: die Bildung fester Kohlensäure. „Vorherige Studien hatten keine Hinweise geliefert, dass CO2 und H2O bei hohem Druck Kohlensäure in beträchtlichen Mengen bilden könnten“, erklärt Janek das Unerwartete an dieser Entdeckung. Weitere Experimente zeigten, dass die Kristalle sich bei niedrigeren Temperaturen in flüssigem Wasser auflösen, aber stabile Kohlesäuremoleküle in Lösung verbleiben und mehr davon entstehen, je höher die Lösung erwärmt wurde.

„An diesem Punkt wurde uns klar, dass, entgegen der gängigen Meinung, Kohlensäure tatsächlich ein ziemlich typisches Molekül in Tiefen von mehr als 80 km auf der Erde sein könnte. Denn im Innern der Erde liegen genau diese Bedingungen vor: Extrem hoher Druck und gleichzeitig sehr hohe Temperaturen“, erklärt Hongbo Wang aus der Hochdruckforschungsgruppe die Ergebnisse der Studie.

Und noch etwas stellten die Wissenschaftler in Ihrer Versuchsreihe fest: Beim Erhitzen der Probe mit einem Laser, wird am „hinteren“ Ende des bewegten Laserspots die Probe sehr schnell wieder fest und friert in gewissen Sinne die Probe in dem Zustand ein, in dem sie sich bei hoher Temperatur befunden hat. Das heißt, dass sehr viel Kohlensäure in der Lösung ist, mehr als sich in Wasser bei niedrigen Temperaturen (z.B. in der Nähe der Schmelztemperatur) lösen kann. Da die „überschüssige“ Kohlensäure in Lösung nicht mehr stabil ist, bildet sich feste Kohlensäure. Durch den schnellen Temperaturabfall am Rand des Laserspots gefriert dann das Wasser (durch den hohen Druck) um die feste Kohlensäure herum, bevor diese sich wieder auflösen kann. „Wir können die feste Kohlensäure also bei Raumtemperatur und bis zur Schmelztemperatur des Wassers beim eingestellten Druck beobachten, nachdem wir mit dem Laser über die Probe gefahren sind“, so Chemiker Janek Zeuschner weiter.

Die Entdeckung könnte im weiteren Verlauf sowohl Auswirkungen auf das gegenwärtige Verständnis der physikalischen Eigenschaften (bspw. die elektrische Leitfähigkeit) unterirdischer Fluide, die molekulare Kohlensäure transportieren, als auch auf die Theorien der chemischen Evolution in diesen Fluiden und damit auf die Entstehung des Lebens haben, vermuten die MPIC-Forscher. „Dass Kohlensäure unter bestimmten Bedingungen eine stabile und damit quantitativ relevante Substanz in der Erde ist, ändert unser Verständnis dieser am globalen Kohlenstoffkreislauf beteiligten Spezies grundlegend“, fasst es Jonathan Williams, Gruppenleiter in der Abteilung Atmosphärenchemie, zusammen.

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/hoher-druck-und-hohe-temperatu...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen
20.09.2017 | Veterinärmedizinische Universität Wien

nachricht Molekulare Kraftmesser
20.09.2017 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik