Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hohensteiner Forscher erzielen Fortschritt bei der Biotoleranz textiler Implantate

07.05.2010
Stammzellen regen Gefäßneubildung an und sorgen so für optimiertes Einwachsen von Textilimplantaten

In der Regenerationsmedizin spielt die Verträglichkeit eines textilen Implantats im Körper – die so genannte Biotoleranz – eine wichtige Rolle.



Schema: Mit Stammzellen besiedelte Textilfasern
sondern Signalmoleküle ab, welche das
Aussprossen neuer Kapillaren aus bestehenden
Gefäßen anregen. Bilder: iStockphoto.com/bubaone/Hohenstein


Textilimplantate werden jedoch nicht immer vom Körper toleriert. Selbst moderne Implantate aus resorbierbaren Biopolymeren, wie z. B. Polymilchsäure, bauen sich zwar nach einer gewissen Zeit im Körper ab, doch zerfallen sie in saure Einzelbestandteile. Sie sorgen rund um den Implantationsort mitunter für erhebliche Probleme, die von Entzündungen bis hin zu Abstoßungsreaktionen reichen können. Ein deshalb für die Biotoleranz von Implantaten entscheidender Faktor ist die schnelle Neubildung von Blutgefäßen am Implantationsort (die so genannte Angiogenese). Neue Kapillaren sorgen dafür, dass die sauren Zerfallsprodukte bioresorbierbarer Textilimplantate rasch abtransportiert werden können.

Zugleich gewährleistet die neue Blutversorgung, dass auch die am Gewebeaufbau beteiligten Zellen ausreichend mit Nährstoffen versorgt werden und das Implantat einwächst, ohne als Fremdkörper abgekapselt zu werden. Mit der Frage, wie sich die Gefäßneubildung gezielt an textilen Implantaten anregen lässt, beschäftigt sich das Institut für Hygiene und Biotechnologie (IHB) an den Hohenstein Instituten bereits seit Langem. Erst kürzlich konnte das von Prof. Dr. Dirk Höfer geleitete Forscherteam aus Medizinern und Humanbiologen zeigen, dass sich speziell modifizierte Textilfasern auch als Träger für humane adulte Stammzellen eignen, auf Basis derer sich neues, gesundes Gewebe entwickeln kann.

Nun ist den Hohensteiner Wissenschaftlern auch im Hinblick auf die Verträglichkeit von Implantaten ein Kardinalexperiment gelungen: Mit Stammzellen besiedelte Textilien wurden auf die mit Gefäßen durchzogene Membran eines Hühnereis gegeben. Bei diesem Versuch handelt es sich um eine tierversuchsfreie Ersatzmethode, das so genannte Chorion-Allantois-Membran (CAM)-Modell. Der Gefäßreichtum der CAM und die fehlende Immunkompetenz ermöglichen optimale Untersuchungen an einem funktionalen Kreislaufsystem. Ziel der Hohensteiner Wissenschaftler war es, dass das Implantat selbst die nötigen Wachstumsfaktoren ausschüttet, welche die Neubildung von Blutgefäßen anregen. Diese Aufgabe sollten die Stammzellen übernehmen.

Zunächst beschichteten die Forscher die Fasern der Textilimplantate mit spezifischen Adhäsionsmolekülen und besiedelten diese anschließend mit humanen adulten Stammzellen, von denen bekannt ist, dass sie Wachstumsfaktoren zur Anregung neuer Gefäße absondern. Um das Schicksal der eingesetzten Stammzellen auf den Fasern exakt verfolgen zu können, wurden die Alleskönner zuvor gentechnisch modifiziert, so dass sie einen roten Fluoreszenzfarbstoff produzieren, der es erlaubt, die Integration der Stammzellen ins umliegende Gewebe visuell zu verfolgen.

In mehreren Versuchsreihen konnten die Forscher auf diese Weise eine gerichtete Gefäßeinsprossung in das textile Implantat hinein beobachten, sowohl makro-, als auch mikroskopisch. Neue Blutgefäße wuchsen in das Implantat und bildeten dort ein funktionelles kapillares Netzwerk. Wurden die Textilien mit Bindegewebszellen besiedelt die keine Wachstumsfaktoren ausschütten, blieb die Gefäßeinsprossung hingegen aus.

Die neuen Forschungsergebnisse des Instituts für Hygiene und Biotechnologie lassen sich künftig dazu nutzen, mit Hilfe von patienteneigenen Stammzellen biologisierte Textilimplantate (wie beispielsweise Herniennetze) schneller und ohne Abstoßungsreaktionen in das Gewebe des Patienten zu integrieren und somit zerstörtes Körpergewebe erfolgreich zu regenerieren. Das in Hohenstein angewandte System ermöglicht es darüber hinaus, zahlreiche weitere Aspekte der Durchblutung textiler Implantate zu beleuchten und diese routinemäßig für den medizinischen Einsatz zu optimieren. Dies stellt einen wichtigen Meilenstein für die Weiterentwicklung der textilen Regenerationsmedizin dar. Die Hohensteiner Forscher beabsichtigen, die Ergebnisse in einem wissenschaftlichen Fachjournal zu veröffentlichen.

Kontaktadressen für nähere Informationen:

Prof. Dr. Dirk Höfer
(Direktor des Instituts für Hygiene und Biotechnologie an den Hohenstein Instituten)

E-Mail: d.hoefer@hohenstein.de

Dr. Timo Hammer
E-Mail: t.hammer@hohenstein.de

Helmut Müller | Hohenstein Institute
Weitere Informationen:
http://www.hohenstein.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Licht zur Herstellung energiereicher Chemikalien nutzen
21.05.2018 | Friedrich-Schiller-Universität Jena

nachricht Junger Embryo verspeist gefährliche Zelle
18.05.2018 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics