Hören auf der Überholspur – Wie das Gehirn tieffrequente Schallquellen blitzschnell ortet

Auch beim Menschen gelingt das Richtungshören dank zweier Ohren und zweier Signale, dem Schalldruck und der Ankunftszeit des Schalls. Dabei empfängt das schallzugewandte Ohr dasselbe tieffrequente Geräusch etwas früher als das schallabgewandte Ohr, wobei die zeitliche Differenz im Mikrosekundenbereich liegt. Dieser zeitliche Unterschied wird im Gehirn verrechnet. Die betreffenden Neuronen erhalten Signale von beiden Ohren und werden je nach Richtung der Schallquelle erregt oder gehemmt.

Ein Team von LMU-Forschern, das auch mit der „Graduate School of Neuroscience“ (GSN) der LMU affiliiert ist, konnte nun unter der Leitung von Dr. Felix Felmy zeigen, dass bei tieffrequentem Schall im Säugerhirn nur sehr wenige Fasern inhibiert und auch nur sehr wenige Fasern erregt werden müssen, um auf das jeweils zugehörige Ausgangsneuron des Schaltkreises eine sehr stark hemmende Wirkung zu haben oder um es überschwellig zu aktivieren.

„Es war überraschend, das entgegen der postulierten Notwendigkeit einer großen Konvergenz von erregenden Eingängen in diesem Schaltkreis, immer eine sehr geringe Anzahl neuronaler Inputs genügt, um den neuronalen Schaltkreis zeitlich extrem präzise überschwellig zu erregen“, berichtet Felmy. „Dabei ist die alltäglich wichtige Lokalisation von tieffrequentem Schall eine neuronale Spitzenleistung des Säugerhirns: Es ist der neuronale Mechanismus, der am zeitlich präzisesten Signale detektieren kann, die über gleichzeitig stattfindende Ereignisse vermittelt werden. In diesem Fall handelt es sich um Schall, der nicht gleichzeitig auf die beiden Ohren auftrifft, obwohl er von derselben Schallquelle stammt. Wir wollen diese Prozesse nun im Detail untersuchen und auch die Interaktion der erregenden und hemmenden Eingänge studieren.“ (The Journal of Neuroscience, 15. Dezember 2010)

Publikation:
„Medial Superior Olivary Neurons Receive Surprisingly Few Excitatory and Inhibitory Inputs with Balanced Strength and Short-Term Dynamics“,
Kiri Couchman, Benedikt Grothe, and Felix Felmy
Journal of Neuroscience, Bd. 30 (50); Seite 17111-17121
15. Dezember 2010
Ansprechpartner:
Dr. Felix Felmy
Abteilung für Neurobiologie, Department Biologie II der LMU
Tel.: 089 / 2180 – 74316
E-Mail: felmy@zi.biologie.uni-muenchen.de

Media Contact

Luise Dirscherl idw

Weitere Informationen:

http://www.uni-muenchen.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer