Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hören mit den Schädelknochen

27.06.2014

Ein neues Modell erklärt, warum wir Schallwellen auch dann wahrnehmen, wenn sie durch die Knochen geleitet werden

Das Ohr ein wichtiges Organ, mit dem wir die Welt um uns herum wahrnehmen. Nur wenigen von uns ist bewusst, dass wir nicht die äußere Hörmuschel sondern auch unsere Schädelknochen Vibrationen empfangen und weiterleiten können.


In dem neuen Modell sind die Bewegung der Basilarmembran und des Knochens (rote Linien) miteinander gekoppelt. Sie können sich daher gegenseitig zu Schwingungen anregen. (Die kleine graue Scheibe symbolisiert das Trommelfell und die schwarze Linie davor die Gehörknöchelchen.)

© Tchumatchenko und Reichenbach

Auch unsere Schädelknochen können Schall empfangen und weiterleiten. Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung in Frankfurt und Tobias Reichenbach vom Imperial College London haben nun gezeigt, dass Schwingungen im Knochen und im Innenohr miteinander gekoppelt sind. Diese Erkenntnisse könnten für die Entwicklung neuer Kopfhörer oder Hörgeräte entscheidend sein.

Unser Hörsinn, also die Fähigkeit Schallwellen wahrzunehmen, entsteht ausschließlich im Innenohr. Wenn sich Schallwellen in der Luft ausbreiten und unseren Gehörgang erreichen, regen sie je nach Frequenz, also Tonhöhe,  unterschiedliche Bereiche auf der sogenannten Basilarmembran im Innenohr zur Schwingung an. Diese mikroskopischen Vibrationen der Membran nehmen wir als Ton wahr. Das Innenohr ist jedoch von einem Kochen umgeben, der ebenfalls in Schwingung versetzt werden kann.

Mithilfe von Berechnungen zur Bewegung von Flüssigkeiten haben die Forscher jetzt herausgefunden, dass die Schwingungen des Knochens und der Basilarmembran miteinander gekoppelt sind, sie können sich also gegenseitig zur Schwingung anregen.

Dies führt zu faszinierenden Phänomenen, die mit dem neuen Modell jetzt verstanden werden können: So können zwei gleichzeitig im Innenohr ankommende Töne mit leicht unterschiedlichen Frequenzen einen Überlapp haben und dieselben Bereiche auf der Basilarmembran anregen. Durch eine Nichtlinearität der Membran entstehen im Innenohr Kombinationstöne, sogenannte otoakustische Emissionen.

Wie genau diese Töne das Innenohr verlassen und wie sich deren Ausbreitung innerhalb des Ohrs gestaltet  ist, ist aktuell Gegenstand wissenschaftlicher Debatte. „Wir haben gezeigt, dass die Kombinationstöne das Innenohr in Form einer schnellen Welle entlang der Knochenoberfläche verlassen können, und nicht wie früher angenommen mit Hilfe einer Basilarwelle“, erklärt Tatjana Tchumatchenko vom Max-Planck-Institut für Hirnforschung.

Außerdem belegt das Modell, dass die Wanderwellen entlang der Basilarmembran genauso durch die Vibrationen des Innenohrknochens entstehen können wie durch die Schwingungen der Luft im Ohrkanal. „Dies erklärt beispielsweise, warum wir eine Stimulation des Knochens genauso hören können wie Schallwellen in der Luft“, sagt Tobias Reichenbach vom Imperial College London.

Mit diesen Ergebnissen können die Forscher das komplexe Zusammenspiel  zwischen der Dynamik von Flüssigkeiten und der Mechanik des Knochens innerhalb des Innenohrs besser verstehen. Damit könnten in Zukunft verbesserte klinische und kommerzielle Anwendungen der Knochenleitung entwickelt werden, wie zum Beispiel neuartige Kombinationen von Brillen und Kopfhörer.

Ansprechpartner 

Dr. Arjan Vink

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Hirnforschung, Frankfurt am Main

Telefon: +49 69 850033-2900
Fax: +49 69 850033-2999

 

Originalpublikation

 

Tatjana Tchumatchenko & Tobias Reichenbach

A cochlear-bone wave can yield a hearing sensation as well as otoacoustic emission

Nature Communications, 23. Juni 2014 (doi:10.1038/ncomms5160)

Dr. Arjan Vink | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Designerviren stacheln Immunabwehr gegen Krebszellen an
26.05.2017 | Universität Basel

nachricht Wachstumsmechanismus der Pilze entschlüsselt
26.05.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften