Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hören ist auch eine Frage der Zeit - Wissenschaftliche Grundlagen für bessere Hörgeräte

22.09.2009
Hörgeräte könnten in Zukunft wesentlich verbessert werden, denn nach neuen Erkenntnissen der Neuroakustiker der Technischen Universität Darmstadt werden bei den derzeit üblichen Hörgeräten wesentliche Komponenten des menschlichen Hörens nicht genügend berücksichtigt.

"Das betrifft insbesondere die zeitliche Verarbeitung der Hörinformation im Gehirn", berichtet Prof. Gerald Langner, der am Fachbereich Biologie der TU Darmstadt seit mehr als zwanzig Jahren Hörforschung betreibt.

Vollständig tauben Menschen, deren Hörnerv nicht oder nur begrenzt durch einen Hörschaden zerstört wurde, kann durch ins Innenohr eingesetzte Hörprothesen, sogenannte Cochlea-Implantate, das Gehör zurückgegeben werden. "Viele können sogar telefonieren, ohne von den Lippen abzulesen, oder Musik hören", erläutert Langner.

Doch das funktioniert bei weitem nicht bei allen Patienten. Warum, wusste bislang niemand. Ein Grund hierfür könnte sein, dass die Verarbeitung der Hörinformation im Gehirn bislang nicht ausreichend berücksichtigt wird. Dabei bilden Nervenzellen im Hirnstamm durch ihre Reaktionen die Tonhöhen, Klänge und Harmonien der jeweiligen Hörinformation ab und machen sie für unser Gehirn erkennbar. Mit diesen Erkenntnissen könnten nicht nur Cochlea-Implantate, sondern eines Tages auch im Gehirn implantierte Hörprothesen befriedigendere Ergebnisse erzielen.

Das Innenohr wandelt Frequenzen um

Nicht nur Musik, auch Sprache besteht zu weiten Teilen aus harmonischen Klängen. Ihr Klangspektrum ist festgelegt durch die Frequenzen der jeweiligen Schallwellen eines Tones und setzt sich aus einem Grundton und Obertönen zusammen. Das Innenohr des Menschen ist sozusagen das biologische Mikrophon, das die periodischen Schallwellen der Klänge aufnimmt und in elektrische Nervenimpulse umwandelt.

Dabei spielen sogenannte Haarzellen im Innenohr, genauer gesagt der Hörschnecke (Cochlea), eine zentrale Rolle. Diese extrem empfindlichen Sinneszellen sind von einer Flüssigkeit umgeben, und auf ihrer Oberfläche befinden sich haarähnliche Strukturen, die durch die Schallwellen bewegt werden. Dabei reagieren die einzelnen Haarzellen je nach ihrer Position in der Cochlea auf eine bestimmte Frequenz maximal, so dass - abhängig von dieser Frequenz - unterschiedliche Bereiche der Cochlea aktiviert werden.

Auf diese Weise wird im Innenohr analysiert, aus welchen Frequenzen sich ein Klang zusammensetzt und welche periodischen Schwingungen auftreten. Die in Nervenimpulse umgewandelte Hörinformation wird dann über Tausende von Nervenfasern ins Gehirn weitergeleitet.

Im Gehirn werden Klang und Tonhöhe abgebildet

Ein Ton wird aber nicht nur durch sein Klangspektrum, also seine Frequenzen definiert, sondern auch durch seinen zeitlichen Verlauf. Im zeitlichen Verlauf stellt sich ein Ton als Schallwelle dar, als periodisches, wellenartiges Signal. Diese Periodizität ist für die Tonhöhe maßgebend. "Deshalb können Musikinstrumente mit verschiedenen Klängen dieselben Tonhöhen spielen", so Langner.

"Im Gegensatz zur Frequenzanalyse, die im Innenohr stattfindet, beginnt die Analyse des zeitlichen Verlaufs eines Tones erst bei den Nervenzellen im Hirnstamm", hat der Darmstädter Neuroakustiker herausgefunden. "Seine Periodizität wird im Mittelhirn und anschließend im für das Hören zuständigen Bereich der Hirnrinde durch die Reaktion von Nervenzellen abgebildet." So entstehen quasi ,neuronale Karten' für den Klang und für die Tonhöhe einer Hörinformation. Dabei wird in einem nur wenige Millimeter großen neuronalen Koordinatensystem der Klang entlang einer Achse und die Tonhöhe entlang der dazu senkrechten Achse abgebildet. "Diese Tatsache dürfte für die Weiterentwicklung heutiger Cochlea-Implantate eine wichtige Rolle spielen."

Hörimplantate zunehmend auch im Gehirn?

Ein Cochlea-Implantat ist eine ins Innenohr eingesetzte Hörprothese für taube Menschen, deren Hörnerv nicht oder nur begrenzt durch einen Hörschaden zerstört wurde. Heutige Prothesen verstärken die Hörinformationen, indem sie bestimmte Bereiche des Hörnerven durch Elektroden künstlich stimulieren. Das gelingt bislang an immerhin bis zu sechs Kontaktpunkten im Innenohr. Zwar haben solche Elektroden oft mehr als 30 Kontakte, aber diese haben aus elektrotechnischen Gründen keinen zusätzlichen Nutzen.

Diese Kontakte sind aber auch nicht der entscheidende Faktor. "Das scheint vielmehr die Zeitinformation zu sein", berichtet Langner, "je besser diese von den Elektroden übertragen wird, um so mehr Informationen kann die zeitliche Analyse im Hirnstamm .aus den Signalen ziehen." Die Stimulationsmuster künftiger Cochlea-Implantate könnten an diese Erkenntnisse angepasst und so die zeitliche Information optimiert weitergegeben werden.

Selbst Hörprothesen direkt im Gehirn erscheinen aufgrund der Forschungsergebnisse sinnvoll. Sie sind aber nur dann angezeigt, wenn der Hörnerv zerstört und eine Weiterleitung der Hörinformation aus dem Ohr nicht möglich ist. Hirnstamm-Prothesen sind denn auch schon keine reine Theorie mehr. Erste Prototypen einer Mittelhirnprothese wurden unter Berücksichtigung von Darmstädter Forschungsergebnissen an der Medizinischen Hochschule Hannover bereits erfolgreich getestet und eingesetzt.

Ansprechpartner:
Prof. Dr. Gerald Langner, Fachbereich Biologie der TU Darmstadt,
Tel. 06151/16-3605, gl_at_bio.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteine entdecken, zählen, katalogisieren
28.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Chemisches Profil von Ameisen passt sich bei Selektionsdruck rasch an
28.06.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive