Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hören ist auch eine Frage der Zeit - Wissenschaftliche Grundlagen für bessere Hörgeräte

22.09.2009
Hörgeräte könnten in Zukunft wesentlich verbessert werden, denn nach neuen Erkenntnissen der Neuroakustiker der Technischen Universität Darmstadt werden bei den derzeit üblichen Hörgeräten wesentliche Komponenten des menschlichen Hörens nicht genügend berücksichtigt.

"Das betrifft insbesondere die zeitliche Verarbeitung der Hörinformation im Gehirn", berichtet Prof. Gerald Langner, der am Fachbereich Biologie der TU Darmstadt seit mehr als zwanzig Jahren Hörforschung betreibt.

Vollständig tauben Menschen, deren Hörnerv nicht oder nur begrenzt durch einen Hörschaden zerstört wurde, kann durch ins Innenohr eingesetzte Hörprothesen, sogenannte Cochlea-Implantate, das Gehör zurückgegeben werden. "Viele können sogar telefonieren, ohne von den Lippen abzulesen, oder Musik hören", erläutert Langner.

Doch das funktioniert bei weitem nicht bei allen Patienten. Warum, wusste bislang niemand. Ein Grund hierfür könnte sein, dass die Verarbeitung der Hörinformation im Gehirn bislang nicht ausreichend berücksichtigt wird. Dabei bilden Nervenzellen im Hirnstamm durch ihre Reaktionen die Tonhöhen, Klänge und Harmonien der jeweiligen Hörinformation ab und machen sie für unser Gehirn erkennbar. Mit diesen Erkenntnissen könnten nicht nur Cochlea-Implantate, sondern eines Tages auch im Gehirn implantierte Hörprothesen befriedigendere Ergebnisse erzielen.

Das Innenohr wandelt Frequenzen um

Nicht nur Musik, auch Sprache besteht zu weiten Teilen aus harmonischen Klängen. Ihr Klangspektrum ist festgelegt durch die Frequenzen der jeweiligen Schallwellen eines Tones und setzt sich aus einem Grundton und Obertönen zusammen. Das Innenohr des Menschen ist sozusagen das biologische Mikrophon, das die periodischen Schallwellen der Klänge aufnimmt und in elektrische Nervenimpulse umwandelt.

Dabei spielen sogenannte Haarzellen im Innenohr, genauer gesagt der Hörschnecke (Cochlea), eine zentrale Rolle. Diese extrem empfindlichen Sinneszellen sind von einer Flüssigkeit umgeben, und auf ihrer Oberfläche befinden sich haarähnliche Strukturen, die durch die Schallwellen bewegt werden. Dabei reagieren die einzelnen Haarzellen je nach ihrer Position in der Cochlea auf eine bestimmte Frequenz maximal, so dass - abhängig von dieser Frequenz - unterschiedliche Bereiche der Cochlea aktiviert werden.

Auf diese Weise wird im Innenohr analysiert, aus welchen Frequenzen sich ein Klang zusammensetzt und welche periodischen Schwingungen auftreten. Die in Nervenimpulse umgewandelte Hörinformation wird dann über Tausende von Nervenfasern ins Gehirn weitergeleitet.

Im Gehirn werden Klang und Tonhöhe abgebildet

Ein Ton wird aber nicht nur durch sein Klangspektrum, also seine Frequenzen definiert, sondern auch durch seinen zeitlichen Verlauf. Im zeitlichen Verlauf stellt sich ein Ton als Schallwelle dar, als periodisches, wellenartiges Signal. Diese Periodizität ist für die Tonhöhe maßgebend. "Deshalb können Musikinstrumente mit verschiedenen Klängen dieselben Tonhöhen spielen", so Langner.

"Im Gegensatz zur Frequenzanalyse, die im Innenohr stattfindet, beginnt die Analyse des zeitlichen Verlaufs eines Tones erst bei den Nervenzellen im Hirnstamm", hat der Darmstädter Neuroakustiker herausgefunden. "Seine Periodizität wird im Mittelhirn und anschließend im für das Hören zuständigen Bereich der Hirnrinde durch die Reaktion von Nervenzellen abgebildet." So entstehen quasi ,neuronale Karten' für den Klang und für die Tonhöhe einer Hörinformation. Dabei wird in einem nur wenige Millimeter großen neuronalen Koordinatensystem der Klang entlang einer Achse und die Tonhöhe entlang der dazu senkrechten Achse abgebildet. "Diese Tatsache dürfte für die Weiterentwicklung heutiger Cochlea-Implantate eine wichtige Rolle spielen."

Hörimplantate zunehmend auch im Gehirn?

Ein Cochlea-Implantat ist eine ins Innenohr eingesetzte Hörprothese für taube Menschen, deren Hörnerv nicht oder nur begrenzt durch einen Hörschaden zerstört wurde. Heutige Prothesen verstärken die Hörinformationen, indem sie bestimmte Bereiche des Hörnerven durch Elektroden künstlich stimulieren. Das gelingt bislang an immerhin bis zu sechs Kontaktpunkten im Innenohr. Zwar haben solche Elektroden oft mehr als 30 Kontakte, aber diese haben aus elektrotechnischen Gründen keinen zusätzlichen Nutzen.

Diese Kontakte sind aber auch nicht der entscheidende Faktor. "Das scheint vielmehr die Zeitinformation zu sein", berichtet Langner, "je besser diese von den Elektroden übertragen wird, um so mehr Informationen kann die zeitliche Analyse im Hirnstamm .aus den Signalen ziehen." Die Stimulationsmuster künftiger Cochlea-Implantate könnten an diese Erkenntnisse angepasst und so die zeitliche Information optimiert weitergegeben werden.

Selbst Hörprothesen direkt im Gehirn erscheinen aufgrund der Forschungsergebnisse sinnvoll. Sie sind aber nur dann angezeigt, wenn der Hörnerv zerstört und eine Weiterleitung der Hörinformation aus dem Ohr nicht möglich ist. Hirnstamm-Prothesen sind denn auch schon keine reine Theorie mehr. Erste Prototypen einer Mittelhirnprothese wurden unter Berücksichtigung von Darmstädter Forschungsergebnissen an der Medizinischen Hochschule Hannover bereits erfolgreich getestet und eingesetzt.

Ansprechpartner:
Prof. Dr. Gerald Langner, Fachbereich Biologie der TU Darmstadt,
Tel. 06151/16-3605, gl_at_bio.tu-darmstadt.de

Jörg Feuck | idw
Weitere Informationen:
http://www.tu-darmstadt.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mitochondrien von Krebszellen im Visier
14.12.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wie die Niere bei Wassermangel hochkonzentrierten Urin herstellt
14.12.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mitochondrien von Krebszellen im Visier

14.12.2017 | Biowissenschaften Chemie

Grazer Forscher stellen Methode zur dreidimensionalen Charakterisierung vulkanischer Wolken vor

14.12.2017 | Geowissenschaften

Leibniz-Preise 2018: DFG zeichnet vier Wissenschaftlerinnen und sieben Wissenschaftler aus

14.12.2017 | Förderungen Preise