Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungscomputer im Fliegenhirn

12.07.2010
Was wäre eine Fußball-WM, wenn wir den rollenden Ball nicht vom Hintergrund unterscheiden könnten? Undenkbar!

Schön wäre es dagegen, wenn der eigene Stürmer den Ball wie in Zeitlupe sehen könnte. Dieser Vorteil gehört jedoch den Fliegen. Die winzigen Gehirne dieser Flugakrobaten verarbeiten visuelle Bewegungen in Sekundenbruchteilen.


Blick ins Fliegenhirn: Mit modernsten Mikroskopie-Methoden beobachten Neurobiologen die Aktivität von Nervenzellen, während die Fliege bewegte Muster sieht und verarbeitet (links). Mit dieser Technik können erstmals einzelne Zellen in dem Gehirnbereich beobachtet werden, der bei Fliegen für das Bewegungssehen zuständig ist (rechts, Maßstab: 20 Mikrometer). Bild: MPI für Neurobiologie / Reiff

Wie die Nervenzellen im Fliegenhirn dazu verschaltet sind, bleibt auch nach über 50 Jahren Forschung ein Rätsel. Jetzt haben Forscher des Max-Planck-Instituts für Neurobiologie erstmals die technischen Voraussetzungen geschaffen, um die grundlegenden Mechanismen im Fliegengehirn zu entschlüsseln. Erste Untersuchungen zeigen: es gibt noch viel zu entdecken.

Bereits 1956 wurde ein mathematisches Modell entwickelt, das sehr genau beschreibt, wie Bewegungen im Gehirn von Fliegen erkannt und verarbeitet werden. Zahllose Versuche haben über die Jahre alle Annahmen dieses Modells bestätigt. Dennoch ist nach wie vor unbekannt, welche Nervenzellen in welcher Weise im Fliegenhirn miteinander verbunden sind, sodass sie wie im Modell arbeiten.

"Uns fehlten einfach die technischen Möglichkeiten, um einzelne Zellen und ihre Verbindungen in diesem Fliegen-Hochleistungscomputer zu untersuchen", sagt Dierk Reiff vom Max-Planck-Institut für Neurobiologie in Martinsried. Das überrascht nicht, bedenkt man wie winzig der für das Bewegungssehen zuständige Bereich des Fliegenhirns ist: In einem Sechstel Kubikmillimeter Gehirn befinden sich über 100.000 Nervenzellen – und jede Zelle ist mehrfach mit ihren Nachbarzellen verbunden. Hier die Reaktion einer einzelnen Nervenzelle auf einen bestimmten Bewegungsreiz herauszufiltern, scheint nahezu unmöglich. Doch genau das haben die Martinsrieder Neurobiologen nun geschafft.

Das Fliegenhirn – besser als jeder Computer

Im Prinzip kann die elektrische Aktivität einzelner Nervenzellen mit feinsten Elektroden gemessen werden. Für diese Methode sind jedoch fast alle zu untersuchenden Nervenzellen im Gehirn der Fliege viel zu klein. Doch gerade dem Fliegenhirn wollten die Forscher seine Geheimnisse entlocken. Zum einen ist hier das Modell des Bewegungssehens am besten erforscht. Zum anderen sind die vergleichsweise wenigen Nervenzellen der Fliege hochspezialisiert und verarbeiten die Bilderflut während des rasanten Fluges mit unglaublicher Präzision. So können Fliegen eine Vielzahl von Informationen über Eigen- und Umweltbewegung in Echtzeit verarbeiten – etwas, dass so kein heute existierender Computer leisten könnte, erst recht nicht, wenn er so winzig wie im Fliegenhirn wäre. Ein klarer Anreiz also, das System zu entschlüsseln.

Fluoreszenz-Moleküle und modernste Mikroskope

"Wir mussten einen Weg finden, die Aktivität dieser Nervenzellwinzlinge ohne die Hilfe von Elektroden zu beobachten", beschreibt Dierk Reiff eine der Herausforderungen. Diese Hürde nahmen die Forscher nun durch den Einsatz modernster genetischer Methoden bei der Fruchtfliege Drosophila melanogaster. Es gelang, einzelne Nervenzellen der Fruchtfliege mit einem Indikator-Molekül auszustatten. TN-XXL macht durch Änderung seiner Fluoreszenzeigenschaften die Aktivität von Nervenzellen sichtbar (Informationen zur Funktion von TN-XXL unter http://www.neuro.mpg.de/news_events/download/0808_Griesbeck_D.pdf).

Um zu untersuchen, wie Fruchtfliegenhirne Bewegungen verarbeiten, zeigten die Neurobiologen den Fliegen sich bewegende Streifenmuster auf einem Leuchtdioden-Bildschirm. Die Nervenzellen im Gehirn der Fliegen reagierten auf diese LED-Lichtreize mit Aktivität, was wiederum zu Änderungen im Leuchtverhalten des Indikator Moleküls führte. Obwohl TN-XXL deutlich heller ist als bisherige Indikator-Moleküle, war es lange Zeit unmöglich, die immer noch sehr geringe Lichtmenge einzufangen und vom LED-Lichtreiz zu trennen. Nach einigem Tüfteln fand Dierk Reiff jedoch die Lösung, indem er das Zwei-Photonen-Laser-Mikroskop mit dem LED-Bildschirm im Genauigkeitsbereich von Mikrosekunden synchronisierte. So konnte das TN-XXL Signal vom LED-Licht getrennt und vom Zwei-Photonen-Mikroskop selektiv gemessen werden.

Die Zellen hinter dem Modell

"Nach über 50 Jahren haben wir nun endlich die technischen Möglichkeiten geschaffen, um den zellulären Aufbau des Bewegungsdetektors im Fliegenhirn zu untersuchen", schwärmt Alexander Borst, der mit seiner Abteilung am Max-Planck-Institut für Neurobiologie dieses Ziel schon seit Jahren verfolgt. Wie viel noch zu entdecken ist, zeigte gleich der erste Einsatz der neuen Methoden. Die Wissenschaftler beobachteten die Aktivität von L2-Zellen, die Informationen von den Fotorezeptoren des Auges erhalten. Die Fotorezeptoren reagieren, wenn die Lichtintensität zu- oder abnimmt. Ganz ähnlich sieht die Reaktion der L2-Zelle in dem Zellteil aus, der diese Informationen vom Fotorezeptor aufgreift. Die Neurobiologen fanden heraus, dass die L2-Zelle diese Information umwandelt und vor allem Information über Helligkeitsabnahmen an nachfolgende Nervenzellen weitergibt. Diese wiederum errechnen daraus die Bewegungsinformation. "Das bedeutet, dass die Information "Licht-an" von den L2-Zellen herausgefiltert wird", fasst Dierk Reiff die Entdeckung zusammen. "Es bedeutet aber auch, dass ein anderer Zelltyp "Licht-an" weitergeben muss – die Fliege reagiert ja auf beides."

Nachdem nun der erste Schritt getan ist, wollen die Wissenschaftler mit den neuen Methoden den Bewegungsdetektor im Fliegenhirn Zelle für Zelle untersuchen und so die Arbeitsweise der beteiligten Nervenzellen aufklären. Auch die Kollegen aus dem gemeinsamen Robotics-Projekt freuen sich schon auf die Ergebnisse.

Originalveröffentlichung:
Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila
Dierk F. Reiff, Johannes Plett, Marco Mank, Oliver Griesbeck, Alexander Borst
Nature Neuroscience, online Veröffentlichung vom 11. Juli 2010
Kontakt:
Dr. Stefanie Merker, Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: +49 89 8578-3514
Fax: +49 89 8995-0022
E-mail: merker@neuro.mpg.de

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de
http://www.neuro.mpg.de/news_events/download/0808_Griesbeck_D.pdf

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Bluthochdruckschalter in der Nebenniere
20.02.2018 | Forschungszentrum Jülich GmbH

nachricht Markierung für Krebsstammzellen
20.02.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics