Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochleistungs-Mikroskop bildet Poren des Zellkerns präziser ab

26.06.2015

Der Transport von bestimmten Molekülen in und aus dem Zellkern erfolgt über die Kernporen. Wie diese in der Kernhülle eingebetteten Poren im Detail aufgebaut sind, wird seit längerem erforscht. Nun ist es Biochemikern der Universität Zürich anhand von Hochleistungs-Elektrononenmikroskopen erstmals gelungen, den Aufbau des Transportkanals im Innern der Kernporen in Hochauflösung darzustellen.

Zwischen dem Zellkern und dem Zytoplasma herrscht ein reger Austausch: Moleküle werden in den Zellkern hinein oder oder von dort hinaus ins Plasma transportiert. In einer menschlichen Zelle werden jede Minute mehr als eine Million Moleküle in den Zellkern transportiert.


Der Kernporenkomplex besteht aus mehreren übereinandergestapelten Ringen: dem Zytoplasmatischen Ring (gold), dem Speichenring im Innern der Pore (blau) und dem Nukleoplasmatischen Ring (grün).

UZH

Spezielle in die Kernmembran eingebettete Poren agieren dabei als Transportschleusen. Diese Kernporen gehören zu den grössten und kompliziertesten Strukturen in der Zelle und bestehen aus mehr als 200 einzelnen Proteinen, die in einer ringförmigen Architektur angeordnet sind.

In ihrem Inneren befindet sich ein Transportkanal, durch den kleine Moleküle ungehindert diffundieren können, während grosse Moleküle bestimmte Kriterien erfüllen müssen, um transportiert zu werden. Nun ist es einer UZH-Forschungsgruppe um Professor Ohad Medalia zum ersten Mal gelungen, in Hochauflösung die räumliche Struktur des Transportkanals in den Kernporen darzustellen.


«Molekulares Tor» im Porenkanal entdeckt

Für ihre Untersuchung benutzten die Wissenschaftler schockgefrorene Präparate von Eizellen des Krallenfrosches. Dank der Verwendung von Kryoelektronen-Mikroskopen konnte Medalias Team die winzig kleinen Kernporen mit nur einem zehntausendstel Millimeter Durchmesser mit deutlich höherer Auflösung als bis anhin darstellen.

Sie führten dadurch unbekannte Details ans Licht: «Wir haben eine bis heute unbeachtete Struktur im Innern der Kernpore entdeckt, die eine Art molekulares Tor bildet, das nur von Molekülen geöffnet werden kann, die den passenden Schlüssel besitzen», erklärt Ohad Medalia.

Bei diesem «molekularen Tor» handelt es sich um den sogenannten Speichenring, der sich in der Mitte von zwei anderen Ringen befindet und sich in das Innere der Kernporen erstreckt. Das Tor selbst besteht aus einem feinmaschigen Gitter, das kleinen Molekülen erlaubt ungehindert durchzuschlüpfen.

Die neue hochaufgelöste Darstellung der Kernporen-Struktur führt zu einem besseren Verständnis, warum bestimmte Moleküle die Kernporen passieren dürfen, während andere abgewiesen werden. Sie hilft auch, die Entstehung von manchen Krankheiten besser zu verstehen, bei denen ein fehlerhafter Transport an den Kernporen eine Rolle spielt – beispielsweise bei Krebsarten des Darms, der Eierstöcke und der Schilddrüse.

Literatur:

M. Eibauer, M. Pellanda, Y. Turgay, A. Dubrovsky, A. Wild, and O. Medalia: Structure and Gating of the Nuclear Pore Complex. Nature Communications. June 26, 2015. doi: 10.1038/ncomms8532


Kryoelektronen-Mikroskopie an der Universität Zürich

Die Kryoelektronen-Tomographie ist ein Verfahren, das die Strukturen in einer Zelle in ihrer natürlichen Umgebung bei hoher Auflösung dreidimensional sichtbar macht. Sie bedient sich zum einen der Elektronen-Mikroskopie und zum andern der Computer-Tomographie. Die Zellen werden in flüssigem Stickstoff bei -190 Grad schockgefroren, wodurch die Zellstrukturen in einem quasi-lebenden Zustanden erhalten bleiben und die Vorbehandlung mit schädlichen Chemikalien entfällt. Extrem leistungsfähige Elektronenstrahlen erlauben die Untersuchung auch von dicken Schnitten oder flachen Ganzpräparaten (bis ca. 500 nm).

Ohad Medalia wurde 2010, als einer der Pioniere auf dem Gebiet der Kryoelektronen-Mikroskopie, zum Professor für Biochemie an die Universität Zürich berufen. Dank der grosszügigen Unterstützung der Mäxi Stiftung konnten zwei Hochleistungs-Elektronenmikroskope des Typs «Polara» und «Titan Krios» angeschafft werden. Sie werden heute zusammen mit dem Zentrum für Mikroskopie und Bildanalyse der UZH betrieben und haben das Technologiespektrum der UZH massgeblich erweitert.

Kontakt:
Prof. Ohad Medalia
Biochemisches Institut
Universität Zürich
Tel. +41 44 635 55 22
E-Mail: omedalia@bioc.uzh.ch

Nathalie Huber
Media Relations
Universität Zürich
Tel. +41 44 634 44 64
E-Mail: nathalie.huber@kommunikation.uzh.ch

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Materialchemie für Hochleistungsbatterien
19.09.2017 | Technische Universität Berlin

nachricht Zentraler Schalter der Immunabwehr gefunden
19.09.2017 | Medizinische Hochschule Hannover

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie