Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochgebirgsvegetation an der Schneegrenze

06.04.2011
MitarbeiterInnen der Forschungsplattform Mountain Limits der Universität Wien haben erstmals am Schrankogel (3.497 m) in Tirol den Grenzbereich zwischen alpiner und nivaler Vegetation sowie die sommerliche Schneegrenze quantitativ untersucht.

Alpine Pflanzen vertragen gelegentlichen Schneefall und Frost in der Vegetationsperiode; nivale Pflanzen dagegen sind an längere Schneebedeckung angepasst: sie sind Schneeschützlinge. Die ForscherInnen warnen, dass sich der Verlust von nivaler Vegetation auf die Biodiversität der alpinen Regionen auswirken könnte. Ihre Ergebnisse haben sie aktuell in der "Meteorologischen Zeitschrift" und in den "Environmental Research Letters (ERL)" veröffentlicht.


Bayrischer Enzian/Gentiana bavarica, eine alpine Pflanze (Copyright: Michael Gottfried)

Der Grenzbereich zwischen alpiner und nivaler Vegetation wird in der ökologischen Fachsprache als alpin-nivales Ökoton bezeichnet. Ökotone gibt es in verschiedenen Höhenlagen. Ein allgemein bekanntes Ökoton ist die Baumgrenze, der Übergang vom Wald zur baumfreien alpinen Vegetation. Für Michael Gottfried vom Department für Naturschutzbiologie, Vegetations- und Landschaftsökologie und Michael Hantel vom Institut für Meteorologie und Geophysik (beide Universität Wien) sowie ihre KollegInnen von der Forschungsplattform ist das alpin-nivale Ökoton ein empfindlicher Indikator, der den Einfluss von Klimaänderungen auf die Biodiversität der Ökosysteme im Hochgebirge anzeigt.

Wichtige Vegetationsgrenzlinie in 3.000 m Höhe

Zur quantitativen Festlegung des Ökotons verwendeten die ForscherInnen ein statistisches Modell, das sie schon für die Schneegrenze eingeführt hatten. Die sog. ’Schneelinie’ verbindet die Orte, an denen man mit 50 prozentiger Wahrscheinlichkeit im Sommer Schnee antrifft. Das alpin-nivale Ökoton verbindet hingegen die Orte, an denen 50 Prozent alpine und 50 Prozent nivale Pflanzen wachsen. "Wir haben Vegetation und Schnee mit einer belastbaren und mathematisch einwandfreien Methode unabhängig voneinander ausgewertet", sagt Michael Gottfried und weiter: "Die meisten Leute kennen nur die Baumgrenze. Wir zeigen, dass das alpin-nivale Ökoton im Bereich um 3.000 m eine weniger auffällige, aber ebenso wichtige Grenzlinie ist."

Alpine Vegetation wandert bergwärts

Alpine Pflanzen dominieren ausgedehnte Regionen von Zwergstrauchheiden und Grasländern (alpine Tundra) oberhalb der Waldgrenze. Dagegen haben die kälte- und schneetoleranten nivalen Pflanzen ihren Verbreitungsschwerpunkt im darüber liegenden offenen Schutt und Felsbereich. Die Grenze zwischen beiden Vegetationszonen ist nicht konstant. "Von 1994 bis 2004 ist das alpin-nivale Ökoton am Schrankogel etwa 20 m aufwärts gewandert", sagt Gottfried.

Vegetationsgrenzbereich wandert langsam, Schneelinie schwankt jährlich

Um die Lage des Ökotons zu bestimmen, untersuchten die ÖkologInnen die Vegetation am Schrankogel während der Sommermonate in ca. 150 Plots. Es handelt sich dabei um je ein Quadratmeter große, genau abgesteckte Untersuchungsflächen. Die ForscherInnen bestimmten das Flächenverhältnis der nivalen Pflanzen zur Gesamtvegetation in jedem Plot, den sogenannten Nivalitätsindex."Der Nivalitätsindex folgt dem gleichen Gesetz, das auch die Schneewahrscheinlichkeit in einer gegebenen Höhe und dadurch die sommerliche Schneelinie bestimmt", sagt Michael Hantel, Klimatologe der Universität Wien. Bemerkenswert daran ist, dass die vertikale Halbwertsbreite des Nivalitätsindex (214 m) viel kleiner ist als die Halbwertsbreite der alpinen Schneekurve (992 m).

Das alpin-nivale Ökoton ist also eine recht scharf definierte Grenzlinie, während die mittlere Schneelinie deutlich breiter ist, da sie von Jahr zu Jahr schwankt. Die Forschungsergebnisse zeigen, dass das Ökoton am Schrankogel und die Schneelinie in den Alpen praktisch in der gleichen Höhe – knapp 3.000 m – liegen. "Die auffällige Übereinstimmung von alpin-nivalem Ökoton und sommerlicher Schneegrenze deutet darauf hin, dass die beiden grundverschiedenen Prozesse letzten Endes der gleichen Dynamik gehorchen", resümiert Michael Hantel.

Das voneinander unabhängige Monitoring des alpin-nivalen Ökotons und der Schneelinie soll zeigen, ob die Gefahr besteht, dass die nivalen Pflanzen ihren Lebensraum verlieren und aussterben. Das Verschwinden dieser Pflanzen mag keine unmittelbaren ökonomischen Auswirkungen haben. Aber der Ökologe Michael Gottfried meint, dass "ihr Verlust einen erheblichen Einfluss auf den Biodiversitätsschatz und die genetische Vielfalt der Hochgebirgsregionen hätte".

Die Untersuchungen wurden im Rahmen der Forschungsplattform Mountain Limits der Universität Wien und als Teil des Projektes Global Observation Research Initiative in Alpine Environments (GLORIA) durchgeführt.

Publikationen:
Michael Hantel und Christian Maurer: The median winter snowline in the Alps. In: Meteorologische Zeitschrift. DOI: 10.1127/0941-2948/2011/0495.

Michael Gottfried, Michael Hantel, Christian Maurer, Ruth Toechterle, Harald Pauli und Georg Grabherr: Coincidence of the alpine-nival ecotone with the summer snowline. In: Environmental Research Letters 6 (2011) 014013 (12pp) DOI: 10.1088/1748-9326/6/1/014013.

Wissenschaftliche Kontakte
MMag. Dr. Michael Gottfried
Department für Naturschutzbiologie, Vegetations- und Landschaftsökologie
Universität Wien
1030 Wien, Rennweg 14
T +43-1-4277-543 72
michael.gottfried@univie.ac.at
emer. O. Univ.-Prof. Dr. Michael Hantel
Institut für Meteorologie und Geophysik
Forschungsplattform Mountain Limits
Universität Wien
1090 Wien, Berggasse 11/II/3
T +43-1-4277-229 02
M +43-676-749 93 10
michael.hantel@univie.ac.at
Rückfragehinweis
Mag. Veronika Schallhart
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-602 77-175 30
veronika.schallhart@univie.ac.at
Weitere Informationen:
http://www.ingentaconnect.com/content/schweiz/mz/pre-prints/0495;jsessionid=h7i75hh0ycy4.alexandra - Meteorologische Zeitschrift
http://iopscience.iop.org/1748-9326/6/1/014013/pdf/1748-9326_6_1_014013.pdf - Enviromental Research Letters
http://www.univie.ac.at/mountainlimits/
http://img.univie.ac.at/
http://www.univie.ac.at/cvl
http://www.gloria.ac.at/

Veronika Schallhart | Universität Wien
Weitere Informationen:
http://www.univie.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher finden neue Ansätze gegen Wirkstoffresistenzen in der Tumortherapie
15.12.2017 | Universität Leipzig

nachricht Moos verdoppelte mehrmals sein Genom
15.12.2017 | Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik