Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hocheffiziente hydrodynamische Trennung von Zellen

04.09.2013
Augsburger Biophysiker zeigen in der Fachzeitschrift "Biomicrofluidics" , wie Tumorzellen in kürzester Zeit aus einer Blutprobe aussortiert werden können.

Die Sortierung von Zellen in Miniatur-Laboren ist ein wichtiger Baustein auf dem Weg zu neuen Diagnosemöglichkeiten in Medizin und Forschung. Einen Beitrag zu diesem sich rasant entwickelnden Feld der Micro-Total-Analysis-System leisten die Augsburger Biophysiker um Prof. Thomas Franke mit ihrer neuesten Veröffentlichung in der Fachzeitschrift "Biomicrofluidics“.


Abb. 1: Schema des Versuchaufbaus: Die Probe wird mit dem "Sample Flow", der mit einer Spritzenpumpe getrieben wird, in den Kanal injiziert und vom "Sheath Flow" fokussiert. Auf ihrem Weg durch den Kanal werden die Zellen an den Messpunkten x1, x2 und x3 durch ein Videomikroskop beobachtet und am Kanalende in die beiden Auffanggefäße getrennt. Copyright: Universität Augsburg, Lehrstuhl für Experimentalphysik I

Abb. 2: Mikroskopbilder an den Messpunkten x1 (a), x2 (b) und x3 (c). Für die Darstellung wurden jeweils 5 aufeinanderfolgende Bilder übereinandergelegt. Die Diagramme unter den Bildern zeigen die jeweilige Höhenverteilung der Zellen. Copyright: Universität Augsburg, Lehrstuhl für Experimentalphysik I

Abb.3: Schematische Darstellung der Zelltrennung am Ende des Kanals. Illustration: Christoph Hohmann, Nanosystems Initiative Munich (NIM)

Dort stellen sie eine neue Methode zur Zellsortierung vor, das "Non-Inertial Lift Induced Cell Sorting“, kurz NILICS. Damit können Zellen anhand ihres unterschiedlichen Verhaltens in einem mikroskopisch kleinen Kanal voneinander getrennt werden, ohne dass man sie speziell markieren muss. Die Effektivität der Methode demonstrieren die Wissenschaftler des Augsburger Lehrstuhls für Experimentalphysik I, indem sie zirkulierende Tumorzellen aus einer Lösung roter Blutkörperchen aussortieren.

Auf der Größenskala weniger Mikrometer verhalten sich Teilchen in Flüssigkeitsströmen anders, als man es aufgrund alltäglicher Erfahrungen erwarten würde. In Kapillaren dieser Größe gibt es nämlich keine Verwirbelungen des Flüssigkeitsstroms, vielmehr liegt ein hochsymmetrisches Flussprofil vor: Die einzelnen Flüssigkeitsschichten fließen störungsfrei nebeneinander her, ohne sich zu vermischen. Wird diese Symmetrie durch ein deformierbares Objekt - wie z. B. durch eine Zelle in der Nähe einer Wand - gestört, versucht das System sich wieder auszugleichen.

Dies erzeugt eine abstoßende Kraft, welche die Zelle von der Wand weg- und zur Kanalmitte hindrückt. Aufgrund der physikalischen Eigenschaften der Umgebung, in der dieser Effekt auftritt, wird er "non-inertial lift effect“ genannt. Ist eine Zelle größer oder deformierbarer als eine andere, erzeugt sie eine größere Störung des Flussfeldes und erfährt folgerichtig eine stärkere Kraft. Anhand dieser Unterschiede lassen sich verschiedene Zellarten voneinander trennen. Dies konnten die Augsburger Wissenschaftler bereits in einer früheren Publikation für rote Blutkörperchen und Blutplättchen nachweisen.

In ihrer neuen Arbeit untersucht die Gruppe jetzt die Möglichkeit, mit der NILICS-Methode zirkulierende Tumorzellen von roten Blutkörperchen zu trennen. Zirkulierende Tumorzellen sind Krebszellen, die vom Primärtumor abgeschieden werden und im Blutkreislauf durch den Körper wandern. Anhand ihrer Anzahl lassen sich Rückschlüsse auf die schwere der Erkrankung oder das Ansprechen auf Therapien ziehen. Allerdings befinden sich lediglich 1 - 10 Tumorzellen in einem Milliliter Blut - eine verschwindend geringe Zahl im Vergleich zu den ca. 6 Millionen körpereigenen Blutzellen! "Deshalb müssen die Tumorzellen vor einer weiteren Analyse erst aus dieser großen Zellmenge heraussortiert werden. An dieser Stelle kommen wir ins Spiel“, erklärt Thomas Geislinger.

Zur Sortierung wird die Blutprobe verdünnt und in den Kanal injiziert. Ein zweiter Fluss fokussiert die Probe an die Wand des Mikrokanals, bevor sie in den eigentlichen Trennbereich fließt. In einem 20 mm langen Kanal mit einem Querschnitt von ca. 60 x 60 Mikrometern wandern die verschiedenen Zellen dann unterschiedlich schnell von der Wand weg. Die Verbreiterung am Ende des Kanals vergrößert schließlich den Abstand zwischen den Zellpopulationen nochmals, bevor sie durch zwei separate Ausgänge in die Auffangbehälter geleitet werden. Mit diesem Aufbau konnten bis zu 100 Prozent der Tumorzellen aus der Probe sortiert werden. Die aussortierten Zellen sind nach der Trennung weiterhin voll lebensfähig und können für anschließende Versuche vermehrt werden.

Als Teil eines Micro-Total-Analysis-Systems ermöglicht die mikrofluidische Zellsortierung viel genauere Ergebnisse, als sie mit konventionellen Methoden erreichbar wären. Zusätzlich spart diese Technik jede Menge Zeit und Kosten. Die Ergebnisse bedürfen keiner tagelangen Labortests, sie liegen schon nach wenigen Minuten vor. Da sie noch dazu billig sind und nahezu überall einsetzbar, ist die weitere Entwicklung von solchen Minilaboren von enormer Bedeutung für die medizinische Versorgung gerade in strukturschwachen Regionen.

Originalveröffentlichung:
Thomas M. Geislinger and Thomas Franke, Sorting of circulating tumor cells (MV3-melanoma) and red blood cells using non-inertial lift, Biomicrofluidics 7, 044120 (2013); http://dx.doi.org/10.1063/1.4818907, (9 pages)

Ansprechpartner:
Prof. Thomas Franke
Soft Matter and Biological Physics
Lehrstuhl für Experimentalphysik I
Universität Augsburg
Telefon +49(0)821-598-3312
thomas.franke@physik.uni-augsburg.de

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Evolutionsvorteil der Strandschnecke
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

nachricht Mobile Goldfinger
28.03.2017 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit