Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hochaufgelöste Mikroskopie für die Lebendzell-Diagnostik

15.09.2014

Im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FastFibreSIM“ wird in den nächsten zwei Jahren daran geforscht, hochauflösende Mikroskop-Bilder für die Diagnostik lebender Zellen schneller und in einer präziseren Darstellung zu erhalten.

Gewöhnlich nutzt man die strukturierte Beleuchtung (Structured Illumination Microscopy, SIM), um mikroskopische Aufnahmen von toten Zellen zu erhalten. Dabei erzeugt eine Beleuchtungseinheit, ein Laser, ein Streifenmuster, das über die Probe verschoben wird.


Eine schnellere Aufnahme von Bildern lebender Zellen ist das Ziel des Projektes "FastFibreSIM"

Döring/IPHT

Aus den so gewonnenen Bildern rekonstruiert ein Algorithmus ein hochaufgelöstes Bild der Zelle. Die Bildaufnahme nimmt einige Sekunden in Anspruch und kann so Bewegungen lebender Zellen nicht fehlerfrei erfassen.

Wissenschaftler vom Leibniz-Institut für Photonische Technologien (IPHT), der Carl Zeiss Microscopy GmbH, der Fibotec Fiberoptics GmbH sowie der Cairn Research Ltd. arbeiten im Rahmen des Projekts „FastFibreSIM“ daran, die Bildaufnahme- und Rekonstruktionszeit zu verringern und ein anwenderfreundliches System zu erhalten.

Dies wird zum einen dadurch erreicht, dass keine oder nur kleine bewegliche Teile am Mikroskop zur Änderung der Beleuchtungsmuster verwendet werden, wodurch eine schnellere Aufnahme von Bildern erst möglich wird. Zudem soll der Algorithmus für das Prozessieren der Bilddaten dahingehend optimiert werden, dass er schneller wird und Bewegungen der Zelle berücksichtigen kann. Ziel der Forscher ist es, die Rekonstruktion in Echtzeit zu ermöglichen.

Ein Hochauflösungsmikroskop, das dreidimensionale Mehrfarbenbilder lebender Zellen mit hoher räumlicher und zeitlicher Auflösung ermöglicht, könnte nicht nur neue Horizonte in der Zellbiologie, sondern auch in der biomedizinischen und pharmazeutischen Forschung erschließen. Zudem kann ein robusteres Gerät auch in biomedizinischen Routine-Anwendungen zum Einsatz kommen.

Gefördert wird das Vorhaben im Rahmen der Förderinitiative BiophotonicsPlus: "Biophotonische Geräte für die angewandten Lebenswissenschaften und den Gesundheitssektor". Die gemeinsame Initiative der teilnehmenden Länder und Regionen wird durch die Europäische Kommission unterstützt. Sie zielt darauf ab Forschungsvorhaben zu stimulieren, die innovative biophotonische Technologien und Methoden in Geräte oder Verfahren überführen, die in der klinischen, medizinischen oder industriellen Praxis Anwendung finden.

Projekt: Schnelle Mikroskopie mit strukturierter Beleuchtung zur Lebendzell-Diagnostik (FastFibreSIM)

Koordinator: Prof. Dr. Rainer Heintzmann (Leibniz-Institut für Photonische Technologien); Albert-Einstein-Str. 9; 07745 Jena; Tel.: 03641 206 431; E-Mail: rainer.heintzmann@ipht-jena.de

Projektvolumen: 1,2 Mio. € (Deutscher Anteil 0,9 Mio. €, davon ca. 47 % Förderanteil durch das BMBF)

Projektlaufzeit: 01.06.2014 bis 31.05.2016

Projektpartner: Leibniz-Institut für Photonische Technologien (IPHT); Carl Zeiss Microscopy GmbH, Jena; Fibotec Fiberoptics GmbH, Meiningen; Cairn Research Ltd. Faversham, Kent, UK

Weitere Informationen:

http://www.biophotonik.org

Dr. Andreas Wolff | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Algorithmus Beleuchtung Biophotonik Forschung IPHT Microscopy Mikroskopie Regionen Zelle Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entzündung weckt Schläfer
29.03.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Rostocker Forscher wollen Glyphosat „entzaubern“
29.03.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten