Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie HIV auf dem Frühradar auftaucht – Tarnung aufgedeckt

09.12.2011
Während sich in einem Teil der Immunzellen des Menschen das HI-Virus rasant vermehren kann, bleiben andere Zellen des Immunsystems unbehelligt.

Forscher des Paul-Ehrlich-Instituts konnten nachweisen, wie sich Monozyten vor einer HIV-Infektion schützen. Eine Schlüsselrolle kommt dabei dem Protein SAMHD1 zu. Mit Blutproben von Patienten mit einer seltenen Erbkrankheit konnten sie zudem zeigen, dass das Fehlen von SAMHD1 ein frühes Erkennen des HI-Virus durch das Immunsystem möglich macht. Über die Forschungsergebnisse berichtet PLoS Pathogens in seiner Online-Ausgabe vom 08.12.2011 (EU-Zeitzone: 09.12.2012; 01.00 Uhr)


Mit HIV-1 infizierte (gelb-grün) und nicht infizierte Monozyten (rot). Die Zellen stammen von Patienten mit dem seltenen Aicardi-Goutières-Syndrom und wurden in Zellkultur infiziert. Diese Zellen besitzen kein funktionstüchtiges SAMHD1 und können daher von HIV-1 infiziert werden.
Image credit: Prof. Viviana Simon, Department of Microbiology, Mount Sinai School of Medicine, New York

Das gefürchtete HI-Virus infiziert im menschlichen Organismus hocheffizient T-Lymphozyten, eine spezielle Zellgruppe des Immunsystems. Dagegen weisen myeloide Blutzellen wie dendritische Zellen, Monozyten und zum Teil Makrophagen, die ebenfalls der Immunabwehr dienen, einen natürlichen Schutz gegen HIV-1 auf. Forscher des Paul-Ehrlich-Instituts (PEI) um Dr. Egbert Flory, Leiter des Fachgebiets „Tissue Engineering und Somatische Zelltherapeutika“ in der Abteilung Medizinische Biotechnologie, und Forschungsgruppenleiterin Prof. Renate König haben jetzt nachgewiesen, dass das zelluläre Protein SAMHD1 („SAM domain and HD domain containing protein 1“) dafür verantwortlich ist, dass Monozyten nicht vom HI-Virus befallen werden.

Wie die PEI-Wissenschaftler zeigen konnten, lässt sich diese 'Schutzfunktion' von SAMHD1 in den nicht infizierbaren Zellen jedoch ausschalten, wenn das Virale Protein X (Vpx) eingebracht wird. Vpx interagiert mit SAMHD1, was zu dessen Abbau führt. Im Ergebnis werden bis dahin HIV-1-resistente Zellen infizierbar. In weiteren Experimenten setzten die Forscher eine mutierte Vpx-Variante ein. Diese kann die SAMHD1-Bindung nicht mehr eingehen und so den Abbau des Proteins nicht mehr induzieren. In diesen Experimenten blieb die Infektion aus. Die Ergebnisse untermauern kürzlich publizierte Befunde zweier weiterer Arbeitsgruppen, die für dendritische Zellen und Makrophagen die Bedeutung von SAMHD1 als restriktiven Faktor einer HIV-1-Infektion beschrieben haben.

Die PEI-Forscher gingen noch einen Schritt weiter: In Kooperation mit Prof. Frank Rutsch, Universitätsklinikum Münster, und Forschern der Mount Sinai School of Medicine in New York um Prof. Viviana Simon und Prof. Ana Fernandez-Sesma untersuchten sie, wie Monozyten von Patienten mit dem sehr seltenen Aicardi-Goutières-Syndrom auf das HI-Virus reagieren. In den Zellen der Patienten mit dieser schweren Erbkrankheit fehlt aufgrund einer Mutation das funktionstüchtige SAMHD1.

„Während normalerweise Monozyten durch HIV überhaupt nicht infiziert werden können, fand in diesen Zellen eine enorme Replikation und damit Vermehrung statt. Ein sehr wichtiger Befund ist aber vor allem, dass hier auch eine erste frühe Antwort der Immunzellen auf das Virus erkennbar war“, erläutert König. Während es beispielsweise bei Grippeviren zu einer schnellen ersten Immunantwort infizierter Zellen mit Interferonausschüttung kommt, weil die virale RNA beim Eindringen als fremd erkannt wird, entkommt das HI-Virus dieser frühen Abwehrphase unerkannt.

„Diese Erkenntnis ist von großer Bedeutung für die Entwicklung von Impfstoffen gegen HIV-Infektionen“, betont Prof. Klaus Cichutek, Präsident des PEI. „Bisher war die Suche wenig erfolgreich, weil durch potenzielle Impfstoffkandidaten keine adäquate Immunreaktion hervorgerufen wurde. Über die Aufklärung der frühen Tarnung des Virus lassen sich möglicherweise Ansätze für eine bessere Impfantwort finden“. Zudem ist durch SAMHD1 ein wichtiger Schlüssel zu einem System gefunden worden, das Zellen vor einer HIV-Infektion schützt.

Originalpublikation:
Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Sylvia Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog. 08.12.2011

Dr. Susanne Stöcker | idw
Weitere Informationen:
http://www.pei.de/
http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002425

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie