Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hitzeschockprotein Hsp12 stellt Zellen bislang unbeobachteten Überlebensmechanismus zur Verfügung

27.08.2010
Trotz klarer Belege, dass Hsp12 – ein so genanntes Hitzeschock- oder Stressprotein – Zellen hilft, unter lebensbedrohlichen Bedingungen zu überleben, war bislang unklar, wie dies genau funktioniert.

Die überraschende Antwort liefert jetzt die Fachzeitschrift Molecular Cell in ihrer Ausgabe vom 27. August. Darin erläutern Forscher der Technischen Universität München (TUM), wie sie die Funktionsweise des Proteins Hsp12 entdeckt haben – einen Schutzmechanismus, wie er bislang noch nie beobachtet wurde. Das im wässrigen Teil des Zellinneren zunächst entfaltete Hsp12 bildet spiralförmige Strukturen, um die Zellmembran zu stabilisieren.

Wenn der einzellige Modellorganismus Saccharomyces cerevisiae (Bierhefe) unter Stress gerät, produziert er mehrere hundert Mal so viel Hsp12 wie normalerweise. Aufgrund dieser nachweislichen Schutzfunktion für die Zelle und augrund seiner geringen Molekularmasse war Hsp12 bisher zusammen mit anderen Proteinen als Hitzeschockprotein, kurz: HSP, klassifiziert worden.

Jetzt hat eine umfassende Studie von Forschern um Prof. Johannes Bucher vom Lehrstuhl für Biotechnologie der TUM allerdings gezeigt, dass sich Hsp12 in seiner Struktur und Funktion von allen anderen bisher bekannten Hitzeschockproteinen unterscheidet. Das Wissenschaftlerteam ist der Überzeugung, dass Hsp12 eine völlig neue Klasse von Hitzeschockproteinen definiert, in welcher es – zumindest bis jetzt – für sich alleine steht.

"Wir haben hier mit Hsp12 ein völlig neues Konzept, Zellen vor Stress zu schützen", erklärt Johannes Buchner, Professor für Chemie an der TU München und Mitglied des Excellenzclusters Munich Center for Integrated Protein Science (CIPSM). "Dieses Protein ist bei Belastung in absolutem Überfluss in der Bierhefe vorhanden – nicht nur bei Hitze, sondern bei unterschiedlichen Arten von Stress. Wir haben herausgefunden, dass Hsp12 andere Proteine nicht davor schützt, sich zu entfalten oder zu verdichten, wie das andere HSPs tun. Stattdessen bindet es sich an die Membranen und verhindert, dass diese Löcher oder Risse bekommen."

Buchner und seine Mitarbeiter beobachteten, dass Hsp12 im Gegensatz zu anderen Stressproteinen in seinem ursprünglichen Zustand komplett entfaltet ist. Sie fanden heraus, dass es sowohl im wässrigen Zytosol innerhalb der Hefezelle als auch in der Außenwand der Zelle, der Plasmamembran, vorhanden ist. Sein Schutzmechanismus scheint wie folgt zu funktionieren: Wenn als Stressreaktion der Zelle mehr Hsp12 gebildet wird, steht durch die höhere Konzentration auch mehr des Proteins in Kontakt mit der Membran. Bei Interaktion mit der Membran faltet sich Hsp12 auf und bildet spiralförmige Strukturen, die zum Teil in die Membran eingebettet werden. Die Hsp12-Helices binden sich an bestimmte Lipidarten, aber ganz offensichtlich nicht so, dass der Aufbau der Membran geändert wird. Stattdessen verändern diese Interaktionen offenbar die Art und Weise, wie die Zellmembran organisiert ist – und stützt so ihre Intaktheit und Stabilität. Die Transformation des Hsp12 von seinem entfalteten Zustand in der Lösung zu einer gefalteten Struktur als Membranschutz scheint komplett reversibel zu sein.

Dieser außergewöhnliche Mechanismus wurde nach und nach in einer langen und komplexen Reihe von Experimenten entdeckt, von denen die meisten einen "Wildtyp" von S. cerevisiae und einen "Knockout"-Bierhefestamm, der Hsp12 nicht synthetisieren konnte, beinhalteten. Das interdisziplinäre Forschungsteam brachte mehr als ein Dutzend fortschrittlicher analytischer Methoden ins Spiel, da jede zwischenzeitliche Entdeckung neue Fragen aufwarf, die es zu beantworten galt.

Die Forscher stellten fest, dass der durch Hsp12 gebotene Überlebensmechanismus der Zelle bei unterschiedlichen Arten von Angriffen funktioniert, darunter Hitzeschock, oxidativer Stress und auch osmotischer Stress, also eine plötzliche Veränderung in der Lösung um eine Zelle herum, die ihre Fähigkeit, den Wasserfluss durch die Membran zu regulieren, gefährdet. Auch Testergebnisse zum Alterungsprozess weisen auf eine Schutzfunktion hin. Die aktuelle Veröffentlichung in Molecular Cell liefert zudem den Nachweis, dass Hsp12 die Gesundheit der Hefezellen unter normalen physiologischen Bedingungen fördert.

Bei derartigen Entdeckungen im Bezug auf Bierhefe ergeben sich automatisch weitere faszinierende Fragen, da viele Lebewesen mit Zellkern – darunter auch der Mensch – viel mit dem evolutionären Erbe des Modellorganismus gemeinsam haben. Wie stark konserviert und wie weit verbreitet ist der neu entdeckte Schutzmechanismus von Hsp12? Wann und in welchem Organismus entwickelte sich das Protein? Ist es einzigartig für S. cerevisiae? Wenn es in anderen Organismen existiert, funktioniert es dann dort auf ähnliche Weise? Das Team aus München durchforstete Genomdatenbanken, um seine Studien in diese Richtung auszuweiten - kam allerdings noch zu keinen schlüssigen Antworten. Die Forscher entdeckten anhand der DNA-Vergleiche jedoch, dass andere Pilzarten und auch menschliche Nervenzellen Proteine bilden können, die dem Hsp12 der Hefe ähnlich sind und die möglicherweise eine Art "Hsp12-Proteinfamilie" bilden.

Die Studie wurde durch Mittel der Deutschen Forschungsgemeinschaft (DFG), des Fonds der Chemischen Industrie und des Projekts CompInt vom Elitenetzwerk Bayern wie auch durch das Excellenzcluster Munich Center for Integrated Protein Science (CIPSM) und das TUM Institute for Advanced Study gefördert.

Kontakt:
Prof. Johannes Buchner
Fakultät für Chemie
Technische Universität München
Lichtenbergstr. 4
85747 Garching, Deutschland
E-Mail: johannes.buchner@ch.tum.de
Tel.: +49 89 289 13341
Fax: +49 89 289 13345
Kostenloses Bildmaterial:
http://mediatum2.ub.tum.de/node?id=993358
Originalveröffentlichung:
Sylvia Welker, Birgit Rudolph, Elke Frenzel, Franz Hagn, Gerhard Liebisch, Gerd Schmitz, Johannes Scheuring, Andreas Kerth, Alfred Blume, Sevil Weinkauf, Martin Haslbeck, and Johannes Buchner: "Hsp 12 Is an Intrinsically Unstructured Stress Protein which Folds upon Membrane Association and Modulates Membrane Function." Molecular Cell 39, 507-520, 27. August 2010. DOI 10.1016/j.molcel.2010.08.001

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress
23.02.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Wie Zellen unterschiedlich auf Stress reagieren
23.02.2018 | Max-Planck-Institut für molekulare Genetik

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics