Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Hirnzellen mit Rechenregeln umgehen

19.01.2010
Neurobiologen der Universität Tübingen zeigen erstmals, wie Hirnzellen einfache Rechenregeln verarbeiten

Viele Situationen des Alltags erfordern Entscheidungen, die auf der Verarbeitung von Zahlen nach bestimmten Regeln beruhen. Wir wählen den Arbeitsplatz, der die beste Bezahlung verspricht, aber entscheiden uns beim Einkaufen für das Produkt mit dem niedrigsten Preis.

Flexible "Größer-als/ Kleiner-als"-Entscheidungen sind nicht nur die Voraussetzung für vernünftiges und zielgerichtetes Verhalten, sie legen auch den Grundstein für mathematische Operationen. Logische Aufgaben wie eben Größenvergleiche gehören deshalb zu den ersten Rechenoperationen, die Kinder in der Grundschule lernen. Neurobiologen der Universität Tübingen aus der Arbeitsgruppe von Prof. Dr. Andreas Nieder konnten nun erstmals zeigen, wie Gehirnzellen einfache mathematische Regeln verarbeiten. Die Arbeit wird in der Fachzeitschrift Proceedings of the National Academy of Sciences of the United States of America (PNAS) online vorab veröffentlicht (Ausgabe 18.-24. Januar 2010).

Mengenvergleiche und Regelverständnis sind beim Menschen in sehr hoher Qualität ausgeprägt, ihre Fundamente sind aber bereits im Tierreich anzutreffen. Um herauszufinden, wie und wo im Gehirn Nervenzellen diese komplexen Aufgaben lösen, haben die Wissenschaftler des Instituts für Neurobiologie Rhesusaffen am Computer trainiert, Punktemengen nach Regeln zu vergleichen. War z.B. die "Größer als"-Regel ihre Aufgabe, mussten die Tiere eine Menge wählen, die mehr Punkte als die vorherige Vergleichsmenge zeigte. Im Falle der "kleiner als"-Regel sollte die kleinere Menge gewählt werden. Da sich sowohl die Größe der Vergleichsmenge als auch die Regel bei jedem Testdurchlauf zufällig ändern konnte, waren die Tiere gefordert, immer konzentriert mitzuarbeiten. Während die Tiere die Aufgaben lösten, fanden sich bei Messungen Gehirnzellen mit erstaunlichen Reaktionen im Bereich des Stirnhirns, dem so genannten Präfrontalkortex etwa im Bereich der Schläfen. Unabhängig davon, wie groß die zu vergleichenden Punktemengen waren, die Gehirnzellen konzentrierten sich offenbar ganz auf die Rechenregel: Die eine Hälfte der Nervenzellen wurde nur dann aktiv, wenn die Regel "größer als" zu befolgen war, die andere Hälfte der Gehirnzellen nur dann, wenn dem Tier die Regel "kleiner als" mitgeteilt worden war.

Mit der neuen Arbeit ergeben sich wertvolle Einblicke in die neurobiologischen Grundlagen höchst abstrakter Denkprozesse, wie sie für Rechenoperationen notwendig sind. "Es geht uns zunächst konkret darum, herauszufinden, wie Nervenzellen Zahlen und Rechenoperationen verarbeiten" erklärt Andreas Nieder, "wir benutzen unsere Untersuchungen über die Verarbeitung von Zahleninformation aber auch bewusst, um Zugang zu den komplexen Denkprozessen des Gehirns zu finden." Gerade die Großhirnrinde am vorderen Bereich des Kopfes stellt das höchste kognitive Steuerzentrum des Gehirns dar und bringt persönlichkeitsbildende geistige Funktionen hervor: So ist bekannt, dass Schädigungen des vorderen Stirnhirns (z.B. nach Schlaganfall oder Hirnverletzungen) zielgerichtetes logisches Denken und Schlussfolgern beeinträchtigen. Die neue Studie gibt wichtige Hinweise darauf, wie das gesunde Gehirn die Befolgung abstrakter Rechenregeln hervorbringt. Dies ist die Grundlage dafür, krankhafte Veränderungen im Umgang mit Zahlen und anderer abstrakter Information besser zu begreifen und langfristig Therapien zu entwickeln.

Originalveröffentlichung: Sylvia Bongard and Andreas Nieder: Basic mathematical rules are encoded by primate prefrontal cortex neurons. PNAS, Online Early Edition, Januar 18.-24., 2010. http://www.pnas.org/content/early/recent

Kontakt:

Prof. Dr. Andreas Nieder
Tierphysiologie, Institut für Neurobiologie, Universität Tübingen
Tel.: + 49 (0)7071 / 29 75347
E-mail: andreas.nieder@uni-tuebingen.de

Michael Seifert | idw
Weitere Informationen:
http://www.pnas.org/content/early/recent
http://www.uni-tuebingen.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zebras: Immer der Erinnerung nach
24.05.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Wichtiges Regulator-Gen für die Bildung der Herzklappen entdeckt
24.05.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten