Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Hirnströme entstehen - Forscher interpretieren Signale von Hirnzellen

19.12.2011
Gemeinsame Pressemitteilung des Forschungszentrums Jülich und der University of Life Sciences (UMB)

Was genau verraten Messungen der Gehirnströme? Wissenschaftler des Forschungszentrums Jülich und der norwegischen University of Life Sciences (UMB) haben ein Modell entwickelt, das Zusammenhänge zwischen der Aktivität der Nervenzellen und messbaren elektrischen Signalen erklärt.


Neuronenwald
Quelle: Hermann Cuntz, modified by Klas Pettersen

Dadurch lassen sich Messwerte künftig besser auswerten, um detaillierte Diagnosen bei unterschiedlichen Erkrankungen des Gehirns zu stellen und geeignete Behandlungen auszuwählen. Ihre Ergebnisse präsentieren die Forscher in der aktuellen Ausgabe der Fachzeitschrift „Neuron”.

Nervenzellen erzeugen Strom, wenn sie aktiv sind. Das nutzen Forscher und Ärzte seit Anfang des Zwanzigsten Jahrhunderts bei der Elektroenzephalographie (EEG), bei der sie mit Elektroden die elektrischen Signale messen. Inzwischen lassen sich diese Signale auch eindeutig verschiedenen Krankheiten, etwa der Epilepsie, zuordnen. Wie sie aber auf mikroskopischer Ebene im Netzwerk der Gehirnzellen entstehen, war bisher nur wenig bekannt.

„Auf der Grundlage von Verfahren aus den Bereichen Physik, Mathematik und Informatik sowie der Datenverarbeitungsleistung von Supercomputern haben wir nun detaillierte mathematische Modelle entwickelt, mit denen sich der Zusammenhang zwischen der Nervenzellaktivität und dem von einer Elektrode aufgezeichneten elektrischen Signal darstellen lässt“, sagt Prof. Gaute Einevoll vom Department of Mathematical Sciences and Technology (IMT) der UMB. Ein entscheidendes Ergebnis: Die Aktivität der Nervenzellen selbst beeinflusst, wie groß der Bereich im Gehirn ist, den eine Elektrode erfasst.

„Die Reichweite einer Mess-Elektrode ist demnach keine konstante Größe“, sagt Professor Markus Diesmann vom Forschungszentrum Jülich, Institut für Neurowissenschaften und Medizin (INM-6). „Arbeiten die Nervenzellen unabhängig voneinander, also jede für sich, ist die Reichweite einer Elektrode gering: Sie empfängt die Signale nur von Nervenzellen in maximal 0,3 Millimetern Entfernung. Arbeiten die Nervenzellen aber gleichzeitig – synchronisiert – empfängt die Elektrode Signale aus einem deutlich größeren Bereich.“ Auch wie viele Nervenzellen untereinander in Kontakt stehen und wie intensiv sie sich austauschen, spielt eine Rolle für die Reichweite der Elektrode.

Das hat Konsequenzen. „Zum einen liefert uns das Ergebnis eine Faustregel für einen Mindestabstand von Mess-Elektroden“, erläutert Diesmann. „Auf der anderen Seite wissen wir nun aber auch, dass bei synchron arbeitenden Zellen das Signal nicht nur den Bereich rund um die Elektrode widerspiegeln muss. Das könnte sich zum Beispiel einmal auf die Diagnose und Therapie von Epilepsie oder auch Parkinson auswirken. In beiden Fällen gehören synchrone Nervenzellverbände zum Krankheitsbild.“

Für ihre Berechnungen hatten die Wissenschaftler ein Kubikmillimeter Hirngewebe aus der Großhirnrinde modelliert. „Das entspricht etwa 100.000 Nervenzellen und damit grob einer Milliarde Synapsen“, sagt Dr. Tom Tetzlaff vom Forschungszentrum Jülich. „Für Elektroden direkt im Gehirn können wir auf dieser Basis eine sinnvolle Aussage treffen. Um unsere Aussagen auf äußerliche Hirnstrommessungen wie etwa das EEG zu übertragen, müssen wir einen deutlich größeren Bereich modellieren. Das ist sehr anspruchsvoll, aber ein Schritt, auf den wir hinarbeiten.“

Das Projekt ist ein Beispiel für die zunehmende Bedeutung des Bereichs Computational Neuroscience in der modernen Hirnforschung.

Originalveröffentlichung:
Modeling the Spatial Reach of the LFP
Henrik Lindén, Tom Tetzlaff, Tobias C. Potjans, Klas H. Pettersen, Sonja Grün, Markus Diesmann, Gaute T. Einevoll
Neuron - 8 December 2011 (Vol. 72, Issue 5, pp. 859-872)
DOI: 10.1016/j.neuron.2011.11.006
http://www.cell.com/neuron/abstract/S0896-6273%2811%2901005-1
Weitere Informationen:
Institut für Neurowissenschaften und Medizin (INM-6):
http://www.csn.fz-juelich.de
Computational Neuroscience Group am UMB:
http://compneuro.umb.no/
Organization for Computational Neurosciences:
http://www.cnsorg.org/
International Neuroinformatics Coordinating Facility (INCF):
http://www.incf.org/
Pressemitteilung bei EurekAlert (in englisch):
http://www.eurekalert.org/pub_releases/2011-12/nuol-ttb120811.php
Ansprechpartner:
Prof. Markus Diesmann
Forschungszentrum Jülich, Institut für Neurowissenschaften und Medizin, Bereich “Computational and Systems Neuroscience (INM-6)
Tel. 02461 61-9301
E-mail: diesmann@fz-juelich.de
Prof. Gaute Einevoll
Norwegian University of Life Sciences
Mobile phone: +47 951 24 536
E-mail: gaute.einevoll@umb.no
Pressekontakt:
Annette Stettien, Tobias Schlösser
Tel.: 02461 61-2388/-4771
E-mail: a.stettien@fz-juelich.de, t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Auf dem Gipfel der Evolution – Flechten bei der Artbildung zugeschaut
27.04.2017 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht Elektroimpulse säubern Industriewässer und Lacke
27.04.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Elektroimpulse säubern Industriewässer und Lacke

27.04.2017 | Biowissenschaften Chemie

ZMP 2017 – Latenzzeitmesseinrichtung für moderne elektronische Zähler

27.04.2017 | Messenachrichten

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie