Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Hirnströme entstehen - Forscher interpretieren Signale von Hirnzellen

19.12.2011
Gemeinsame Pressemitteilung des Forschungszentrums Jülich und der University of Life Sciences (UMB)

Was genau verraten Messungen der Gehirnströme? Wissenschaftler des Forschungszentrums Jülich und der norwegischen University of Life Sciences (UMB) haben ein Modell entwickelt, das Zusammenhänge zwischen der Aktivität der Nervenzellen und messbaren elektrischen Signalen erklärt.


Neuronenwald
Quelle: Hermann Cuntz, modified by Klas Pettersen

Dadurch lassen sich Messwerte künftig besser auswerten, um detaillierte Diagnosen bei unterschiedlichen Erkrankungen des Gehirns zu stellen und geeignete Behandlungen auszuwählen. Ihre Ergebnisse präsentieren die Forscher in der aktuellen Ausgabe der Fachzeitschrift „Neuron”.

Nervenzellen erzeugen Strom, wenn sie aktiv sind. Das nutzen Forscher und Ärzte seit Anfang des Zwanzigsten Jahrhunderts bei der Elektroenzephalographie (EEG), bei der sie mit Elektroden die elektrischen Signale messen. Inzwischen lassen sich diese Signale auch eindeutig verschiedenen Krankheiten, etwa der Epilepsie, zuordnen. Wie sie aber auf mikroskopischer Ebene im Netzwerk der Gehirnzellen entstehen, war bisher nur wenig bekannt.

„Auf der Grundlage von Verfahren aus den Bereichen Physik, Mathematik und Informatik sowie der Datenverarbeitungsleistung von Supercomputern haben wir nun detaillierte mathematische Modelle entwickelt, mit denen sich der Zusammenhang zwischen der Nervenzellaktivität und dem von einer Elektrode aufgezeichneten elektrischen Signal darstellen lässt“, sagt Prof. Gaute Einevoll vom Department of Mathematical Sciences and Technology (IMT) der UMB. Ein entscheidendes Ergebnis: Die Aktivität der Nervenzellen selbst beeinflusst, wie groß der Bereich im Gehirn ist, den eine Elektrode erfasst.

„Die Reichweite einer Mess-Elektrode ist demnach keine konstante Größe“, sagt Professor Markus Diesmann vom Forschungszentrum Jülich, Institut für Neurowissenschaften und Medizin (INM-6). „Arbeiten die Nervenzellen unabhängig voneinander, also jede für sich, ist die Reichweite einer Elektrode gering: Sie empfängt die Signale nur von Nervenzellen in maximal 0,3 Millimetern Entfernung. Arbeiten die Nervenzellen aber gleichzeitig – synchronisiert – empfängt die Elektrode Signale aus einem deutlich größeren Bereich.“ Auch wie viele Nervenzellen untereinander in Kontakt stehen und wie intensiv sie sich austauschen, spielt eine Rolle für die Reichweite der Elektrode.

Das hat Konsequenzen. „Zum einen liefert uns das Ergebnis eine Faustregel für einen Mindestabstand von Mess-Elektroden“, erläutert Diesmann. „Auf der anderen Seite wissen wir nun aber auch, dass bei synchron arbeitenden Zellen das Signal nicht nur den Bereich rund um die Elektrode widerspiegeln muss. Das könnte sich zum Beispiel einmal auf die Diagnose und Therapie von Epilepsie oder auch Parkinson auswirken. In beiden Fällen gehören synchrone Nervenzellverbände zum Krankheitsbild.“

Für ihre Berechnungen hatten die Wissenschaftler ein Kubikmillimeter Hirngewebe aus der Großhirnrinde modelliert. „Das entspricht etwa 100.000 Nervenzellen und damit grob einer Milliarde Synapsen“, sagt Dr. Tom Tetzlaff vom Forschungszentrum Jülich. „Für Elektroden direkt im Gehirn können wir auf dieser Basis eine sinnvolle Aussage treffen. Um unsere Aussagen auf äußerliche Hirnstrommessungen wie etwa das EEG zu übertragen, müssen wir einen deutlich größeren Bereich modellieren. Das ist sehr anspruchsvoll, aber ein Schritt, auf den wir hinarbeiten.“

Das Projekt ist ein Beispiel für die zunehmende Bedeutung des Bereichs Computational Neuroscience in der modernen Hirnforschung.

Originalveröffentlichung:
Modeling the Spatial Reach of the LFP
Henrik Lindén, Tom Tetzlaff, Tobias C. Potjans, Klas H. Pettersen, Sonja Grün, Markus Diesmann, Gaute T. Einevoll
Neuron - 8 December 2011 (Vol. 72, Issue 5, pp. 859-872)
DOI: 10.1016/j.neuron.2011.11.006
http://www.cell.com/neuron/abstract/S0896-6273%2811%2901005-1
Weitere Informationen:
Institut für Neurowissenschaften und Medizin (INM-6):
http://www.csn.fz-juelich.de
Computational Neuroscience Group am UMB:
http://compneuro.umb.no/
Organization for Computational Neurosciences:
http://www.cnsorg.org/
International Neuroinformatics Coordinating Facility (INCF):
http://www.incf.org/
Pressemitteilung bei EurekAlert (in englisch):
http://www.eurekalert.org/pub_releases/2011-12/nuol-ttb120811.php
Ansprechpartner:
Prof. Markus Diesmann
Forschungszentrum Jülich, Institut für Neurowissenschaften und Medizin, Bereich “Computational and Systems Neuroscience (INM-6)
Tel. 02461 61-9301
E-mail: diesmann@fz-juelich.de
Prof. Gaute Einevoll
Norwegian University of Life Sciences
Mobile phone: +47 951 24 536
E-mail: gaute.einevoll@umb.no
Pressekontakt:
Annette Stettien, Tobias Schlösser
Tel.: 02461 61-2388/-4771
E-mail: a.stettien@fz-juelich.de, t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher sehen Biomolekülen bei der Arbeit zu
05.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Wie sich Zellen gegen Salmonellen verteidigen
05.12.2016 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flüssiger Wasserstoff im freien Fall

05.12.2016 | Maschinenbau

Forscher sehen Biomolekülen bei der Arbeit zu

05.12.2016 | Biowissenschaften Chemie

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungsnachrichten