Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hinweise auf mikrobielles Leben im Erdmantel unterhalb des Meeresbodens entdeckt

04.09.2015

Wie ein internationales Forscherteam in einer neuen Studie in der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) berichtet, finden sich in kreidezeitlichen Gesteinen tief unter dem Meeresboden Hinweise auf mikrobielles Leben. Die urzeitlichen Mikroben sind wahrscheinlich die gleichen, die heutzutage an bestimmten heißen Quellen inmitten des Atlantiks leben. Diese Entdeckung unterstützt die seit langem bestehende Hypothese, dass die Wechselbeziehungen zwischen Erdmantelgestein und Meerwasser das Potenzial für Leben schaffen – sogar in Gesteinen unter dem Meeresboden.

Als vor über 100 Millionen Jahren der Superkontinent Pangaea auseinander driftet, bildet sich ein Graben, der später der Atlantische Ozean werden soll. Seitdem bewegen sich die Erdplatten auseinander – die heutigen amerikanischen Kontinente auf der einen, Europa und Afrika auf der anderen Seite.


Schematische Darstellung von Stoffflüssen und mikrobieller Lebewelt an untermeerischen Hydrothermalquellen

Illustration von Jack Cook, Woods Hole Oceanographic Institution; eingefügte paläogeographische Rekonstruktion von Ron Blakey, Colorado Plateau Geosystems; Beschriftung wurde ins Deutsche übersetzt


Die von Klein und seinen Kolleg_innen untersuchte Gesteinsprobe aus dem Bremer Bohrkernlager am MARUM.

Foto: F. Klein, WHOI

In ihrer Mitte der mittelatlantische Rücken, der mehr als 15.000 Kilometer lange, untermeerische Gebirgszug, der sich von Nord nach Süd durch den kompletten Atlantik zieht. Dort wird stetig neuer Meeresboden gebildet; der älteste Meeresboden findet sich folglich an den Rändern des Ozeans.

Diesen urzeitlichen Meeresboden hat sich ein Team von Wissenschaftler_innen der Woods Hole Oceanographic Institution (WHOI), USA, der Virginia Tech University, USA, und dem MARUM, Zentrum für Marine Umweltwissenschaften an der Universität Bremen, genauer angesehen.

„Ursprünglich wollten wir an den Gesteinsproben untersuchen, wie Meerwasser und Mantelgestein einander beeinflussen und wie durch diesen Prozess Wasserstoff entsteht“, sagt Dr. Frieder Klein, Wissenschaftler am WHOI und Erstautor der Studie. „Aber während unserer Analysen entdeckten wir Einschlüsse in den Gesteinsproben, die reich an organischem Material waren. Sie enthielten Proteine, Fette und Aminosäuren – die Bausteine des Lebens – konserviert in den sie umgebenden Mineralen.“

Diese Überreste stammen von Mikroorganismen, die sich vor 150 bis 100 Millionen Jahren genau dort entwickelten, wo sich der Graben zwischen den Kontinenten auftat. Durch die Bewegung der Erdplatten wurde Mantelgestein aus dem Erdinneren nach oben zum Meeresboden gezogen und kam in Kontakt mit dem Meerwasser. Die dabei ablaufenden chemischen Reaktionen verwandelten das Meerwasser in sogenannte hydrothermale Fluide, heiße wasserstoffreiche, wässrige Lösungen.

“Die hydrothermalen Fluide hatten wahrscheinlich einen hohen pH-Wert und enthielten Wasserstoff und Methan“, so Klein. „Mischt man diese im richtigen Verhältnis mit dem gelösten Kohlenstoff und anderen Substanzen aus dem Meerwasser, erhält man alle Zutaten, die Mikroben zum Leben brauchen.“

Mit seinen ersten Analysen fand Klein Aminosäuren, Proteine und Fette in den Gesteinsproben. Sie lieferten jedoch nicht genügend detaillierte Informationen, um die Biomoleküle mit denen anderer Mikroorganismen aus verschiedenen Ökosystemen vergleichen zu können. Daher holte sich Klein Verstärkung von der Universität Bremen, wo er 2009 seine Doktorarbeit verfasste. MARUM-Wissenschaftlerin Dr. Florence Schubotz ist Expertin für die Analyse von Lipiden, chemischer Verbindungen zu denen auch die Fette gehören.

„Ich habe die Millionen Jahre alten Gesteine auf das Vorkommen von speziellen Kohlenwasserstoffen untersucht, welche Überreste von mikrobiellen Membranlipiden darstellen. Diese konnte ich mit den modernsten Methoden die mir am MARUM zur Verfügung stehen auftrennen und identifizieren, um sie dann mit denen aus anderen Ökosystemen am und im Meeresboden zu vergleichen“, erklärt die Geochemikerin. „Erstaunlicherweise ähneln sie einer ganz speziellen Gruppe, die im Hydrothermalfeld „Lost City“ vorkommt.“

„Lost City“ ist ein aus etwa 30 Schloten bestehendes Hydrothermalfeld, das im Jahr 2000 im Atlantis-Massiv, Teil des mittelatlantischen Rückens, entdeckt wurde. Wissenschaftler_innen nehmen an, dass es sich hierbei um das moderne Gegenstück zu den heißen Quellen der frühen Erdgeschichte handelt, an denen sich Leben entwickelt haben könnte. Die von Klein und seinem Team gefundenen Biomoleküle könnten ein wichtiger Schlüssel sein, um die Bedingungen zu verstehen, unter denen Leben in Gesteinen tief unter dem Meeresboden möglich ist.

Die untersuchten Gesteinsproben wurden 1993 im Rahmen des Ozeanbohrprogramms ODP (heutiges Nachfolgeprogramm: International Ocean Discovery Program IODP) vor der Küste der Iberischen Halbinsel mit dem Forschungsbohrschiff JOIDES Resolution gewonnen. Während dieser Expedition bohrten Wissenschaftler_innen etwa 690 Meter tief durch Sedimente, um den darunter liegenden, etwa 125 Millionen Jahre alten Ozeanboden zu erreichen, der damals bei der Öffnung des Atlantiks entstand. Die Bohrproben lagern im Bremer Bohrkernlager am MARUM, wo sie für die PNAS-Studie von Klein und seinen Kolleg_innen untersucht wurden.

Um mehr über diese speziellen Mikroorganismen und die Umweltbedingungen in ihrem Lebensraum zu lernen, wollen die Wissenschaftler_innen zukünftig weitere Proben vom Meeresboden untersuchen, so zum Beispiel auf der anderen Seite des Atlantiks vor der Neufundländischen Küste. Zudem verspricht eine für Oktober geplante IODP-Expedition zum Atlantis-Massiv neue Erkenntnisse zu biogeochemischen Prozessen am mittelatlantischen Rücken. Hierbei wird auch das Meeresboden-Bohrgerät MARUM-MeBo70 zum Einsatz kommen.

Publikation:
Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin
Frieder Klein, Susan E. Humphris, Weifu Guo, Florence Schubotz, Esther M. Schwarzenbach und William D. Orsi
Veröffentlicht in: Proceedings of the National Academy of Sciences (PNAS), online am 31. August 2015, doi:10.1073/pnas.1504674112

Weitere Informationen / Interviewanfragen / Bildmaterial:

Jana Stone
MARUM-Öffentlichkeitsarbeit
Tel.: 0421 218 65541
Email: jstone@marum.de

MARUM entschlüsselt mit modernsten Methoden
und eingebunden in internationale Projekte
die Rolle des Ozeans im System Erde –
insbesondere im Hinblick auf den globalen Wandel.
Es erfasst die Wechselwirkungen
zwischen geologischen und biologischen Prozessen im Meer und liefert Beiträge für eine nachhaltige Nutzung der Ozeane.

Das MARUM umfasst das DFG-Forschungszentrum und
den Exzellenzcluster "Der Ozean im System Erde".

Weitere Informationen:

http://www.marum.de
https://www.marum.de/Page7840.html
http://www.whoi.edu/news-release/microbes-in-rocks

Albert Gerdes | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wasserbewegung als Hinweis auf den Zustand von Tumoren
19.04.2018 | Gesellschaft Deutscher Chemiker e.V.

nachricht Verbesserte Stabilität von Kunststoff-Leuchtdioden
19.04.2018 | Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics