Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Hin zu neuen antiviralen Wirkstoffen und Antibiotika

07.07.2017

Wissenschaflter der Freien Universität Berlin und des Leibniz-Forschungsinstituts für Molekulare Pharmakologie (FMP) haben einen Schlüsselmechanismus im Prozess der Verformung von Zellmembranen entdeckt.

„Dieser Mechanismus spielt eine fundamentale Rolle in der zellulären Aufnahme von Rezeptoren und Hormonen und wird von Viren und Bakterien gekapert“, erläutert Prof. Dr. Frank Noé, Computerwissenschaftler an der Freien Universität Berlin, der die Studie gemeinsam mit Prof. Dr. Volker Haucke, Biochemiker am FMP, leitete.


Zellen nehmen Stoffe in ihr Inneres auf, indem sie Einstülpungen produzieren. Die Bildmitte zeigt den Schritt der Verengung der Membraneinstülpung am Rand, der hier hier identifiziert wurde. Clathrinmoleküle, rot dargestellt, können nur eine Einstülpung formen und stabilisieren (links). Um die Einstülpung abzuschneiden, wird die molekulare Schere Dynamin (violett) benötigt. Damit diese Scheren schneiden können, muss der Rand der Einstülpung zunächst verengt werden. SNX9 (grün) wurde nun als das Molekül identifiziert, das diese Einstülpung bewirkt.

Quelle: Frank Noé und Thomas Splettstößer / scistyle.com

Der Schlüssel zum Erfolg sei die Kombination aus Hochleistungs-Computersimulationen, hochauflösender Mikroskopie und zellbiologischen Methoden gewesen. Die Arbeit schließe ein wichtiges Kapitel in der Erforschung der Clathrinabhängigen Endozytose (CME) ab und sei von hoher biochemischer und biotechnologischer Relevanz in der Bekämpfung von Diabetes und Krebs sowie für die Entwicklung von antiviralen und antibakteriellen Wirkstoffen. Die Ergebnisse wurden in der renommierten Fachzeitschrift Nature Communications veröffentlicht.

„Zellen kommunizieren miteinander und mit ihrer Umgebung mithilfe von Rezeptoren auf ihrer Oberfläche“, erklärt Prof. Dr. Frank Noé. Die Veränderung der Anzahl bestimmter Rezeptoren an der Zellmembran beeinflusse die Schwelle, oberhalb derer eine Zelle ein bestimmtes Signal wahrnimmt. Manche Rezeptoren müssten auch ins Zellinnere aufgenommen werden, um die richtige Zellantwort auszulösen.

„Die Frage ist, mit welchem Mechanismus solche Rezeptoren von der Zellmembran entfernt und in die Zelle aufgenommen werden können“, sagt Dr. Volker Haucke. Eine Möglichkeit sei, sie in Paketen zu sammeln, die entsprechende Membranstelle einzustülpen und dann in das Zellinnere abzuschnüren. Diesen Prozess nenne man Clathrinabhängige Endozytose (CME).

„Es ist, als würde man einen Ballon aus einem Tuch formen, es entsteht damit ein sogenanntes Vesikel“, erklärt der Pharmakologe. Zunächst müsse eine Einstülpung gebildet werden, dann am Rand verengt und zuletzt abgeschnitten werden.

Es sei im Detail bekannt, welche Moleküle die Membranausstülpung bilden und die Abschnürung bewirken; den Wissenschaftlern der Freien Universität Berlin und des Leibniz-Forschungsinstituts für Molekulare Pharmakologie ist es nun gelungen festzustellen, welches Molekül die Membraneinstülpung verengt, bevor sie abgeschnitten werden kann: Es ist SNX9.

In ihrer Untersuchung machten die Wissenschaftler zunächst das Molekül-Signal aus, das die Membranverengung initiiert. „Es stellte sich heraus, dass sich im Prozess der Membraneinstülpung nicht nur die Form der Membran verändert, sondern auch deren Zusammensetzung“, erklärt Dr. Johannes Schöneberg, einer der Erstautoren der Studie. Während die Membraneinstülpung wachse, reicherten sich immer mehr Moleküle eines bestimmten Lipids darin an.

„Man kann sich das wie in einem molekularen Konzert vorstellen, in dem das erste Lied gespielt wird – es entsteht ein ziemliches Gedränge“, sagt Dr. Martin Lehmann, ein weiterer Erstautor. Die Wissenschaftler tetsteten verschiedene „Kandidaten“und stellten fest, dass SNX9 das Schlüsselmolekül ist, das am stärksten auf die Verändung der Membranzusammensetzung reagiert.

Sobald SNX9 identifiziert war, konnte das Molekül mit Fluoreszenzfarbstoffen sichtbar gemacht werden, und die Wissenschaftler konnten seine Wege verfolgen, während die Zelle eine Einstülpung produziert. SNX9 erreicht die Membran genau im richtigen Moment und verengt die Einstülpung, bevor sie abgeschnitten wird, sodass schließlich ein Vesikel entsteht.

Publikation
Johannes Schöneberg, Martin Lehmann, Alexander Ullrich, York Posor, Wen-Ting Lo, Gregor Lichtner, Jan Schmoranzer, Volker Haucke, Frank Noé (2017): "Lipid-mediated PX-BAR domain recruitment couples local membrane constriction to endocytic vesicle fission", in: Nature Communications. DOI: 10.1038/ncomms15873


Kontakt
Prof. Dr. Frank Noé, Fachbereich Mathematik und Informatik, Freie Universität Berlin, Telefon: 030 / 838-75354, E-Mail: frank.noe@fu-berlin.de
Prof. Dr. Volker Haucke, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Telefon: 030 / 94793-101, E-Mail: haucke@fmp-berlin.de

Silke Oßwald | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.fmp-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Reize auf dem Weg ins Bewusstsein versickern
22.09.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Lebendiges Gewebe aus dem Drucker
22.09.2017 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie